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Abstract

The risk-return tradeoff, while viewed as a fundamental law of finance, has been challenging to

find empirically in the aggregate stock market. We consider a representative agent asset pricing

model with Knightian uncertainty and demonstrate that the positive relationship between the

conditional equity premium and market volatility depends on the agent’s ambiguity attitude

(reflecting the agent’s degree of optimism or pessimism). The model predicts the conditional

equity premium is increasing in market volatility, but its slope flattens as market optimism rises.

We develop a methodology to extract the representative agent’s ambiguity attitude from our

asset pricing model. Results validate our model predictions and document the significant in-

sample and out-of-sample explanatory power of ambiguity attitude in explaining the risk-return

tradeoff. In our sample, market volatility is not significant in forecasting returns. However,

including the market ambiguity attitude leads to a significant positive relationship between

volatility and future returns. Hence, our model and results can explain why the literature has

found it difficult to empirically validate the risk-return tradeoff.
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1. Introduction

A positive relationship between the conditional mean and the conditional variance of aggregate

stock returns (the risk-return tradeoff) is one of the central empirical implications of equilibrium

asset pricing theory. Rational risk-averse investors require higher compensation in equilibrium for

holding stocks during riskier periods (i.e., periods with higher market volatility) (Merton, 1973,

1980). Ghysels et al. (2005) comment that “This risk-return trade-off is so fundamental in financial

economics that it could be described as the “first fundamental law of finance.” Unfortunately, the

trade-off has been hard to find in the data. Previous estimates of the relation between risk and

return often have been insignificant and sometimes even negative” (p.510). Recent work continues

to find the absence of a risk-return relation for the aggregate stock market (Moreira and Muir,

2017; DeMiguel et al., 2021; Barroso and Maio, 2023) and theoretical asset pricing models have

struggled to offer an explanation.

In this paper, we build on the literature related to Knightian uncertainty or ambiguity in

which probabilities of events are unknown and investors have varying degrees of optimism and

pessimism (ambiguity attitudes) towards this uncertainty. Prior research has found that ambiguity

and ambiguity aversion help explain the equity premium puzzle (e.g., Chen and Epstein, 2002;

Ju and Miao, 2012), the stock market non-participation puzzle (e.g., Dow and da Costa Werlang,

1992; Easley and O’Hara, 2009; Dimmock et al., 2016), and the cross-section of expected stock

returns (e.g., Thimme and Völkert, 2015; Bali and Zhou, 2016). We provide a theoretical asset

pricing model that shows market ambiguity attitude plays a critical role in explaining the risk-

return tradeoff. Our paper then empirically documents that a significant, positive mean-variance

relationship only exists when we include market ambiguity attitude. This significant relationship

is robust to inclusion of standard equity premium predictors, and it holds across different forecast

horizons, sub-samples, and in both in-sample and out-of-sample tests.

We consider a representative agent asset-pricing model in a setting of Knightian uncertainty

with an agent that has a strong decision theoretic foundation. We obtain the theoretical prediction

that the agent’s degree of optimism or pessimism (the market ambiguity attitude) systematically

moderates the risk-return tradeoff. That is, the conditional equity premium is increasing in market

volatility, and the slope of this relationship flattens as market optimism increases. To test this
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theoretical prediction, we develop a methodology for measuring market ambiguity attitude directly

from the asset pricing model.

The expected utility model, which serves as the foundation for axiomatic decision theory, game

theory, information economics, and asset pricing theory, has difficulty reconciling both ambiguity-

averse and ambiguity-seeking behavior (Baillon and Bleichrodt, 2015; Kocher et al., 2018). This

limitation is shared by the standard ambiguity models applied to market settings which focus only

on ambiguity aversion (Gilboa and Schmeidler, 1989; Hansen and Sargent, 2001; Klibanoff et al.,

2005). We consider a representative agent characterized by the NEO-EU (non-extreme outcome

expected utility) model of choice under ambiguity as in Chateauneuf et al. (2007) and Zimper

(2012), which permits a full spectrum of ambiguity attitudes ranging from purely pessimistic to

purely optimistic.1

We introduce an interpretation of the NEO-EU pricing formula that provides an intuitive ex-

planation for systematic deviations from market efficiency. The equilibrium price can be expressed

as a weighted average of an information component (the asset’s discounted expected value) and a

noise component (depending on market ambiguity attitude). In the absence of ambiguity, prices

fully reflect the information component. As ambiguity rises, prices increasingly reflect the market’s

ambiguity attitude. Hence, when ambiguity is high, prices may deviate from the standard impli-

cation of market efficiency (that prices fully reflect available information) as the price partially

reflects information and partially reflects the market’s ambiguity attitude.

From a broader perspective, the NEO-EU representative agent model provides a means of

unifying different sources of time-varying expected returns that have traditionally been studied

in isolation. In particular, the simple formula for the equity premium derived from a NEO-EU

CAPM model includes a role for market optimism, Knightian uncertainty, positive skewness, and

disaster risk, thereby unifying four strands of the asset pricing literature. The formula for the equity

premium can be decomposed into a speculation premium, which is increasing in market optimism,

in market positive skewness, and in market uncertainty, and an uncertainty premium, which is

increasing in market ambiguity aversion, in market disaster risk, and in market uncertainty.

Chateauneuf et al. (2007) observe, “On an aggregate level, business cycles and stock market

1The NEO-EU model satisfies the axioms of both the α-maxmin multiple priors model (Gilboa and Schmeidler,
1989; Ghirardato et al., 2004), and Choquet expected utility theory (Schmeidler, 1989), two of the primary frameworks
for modeling decisions under ambiguity in which objective probabilities of events are unknown.
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fluctuations have been attributed to ‘irrational’ optimism and pessimism. Economic theory, how-

ever, finds it difficult to see in such moods a major factor determining economic behavior.” By

demonstrating that market ambiguity attitude explains time variation in the risk-return tradeoff

and that it predicts market crashes and NBER recessions, our study indicates that market ambi-

guity attitude provides an economic rationale into business cycles and stock market fluctuations.

This paper makes three contributions. First, we contribute to the literature on empirical ap-

plications of ambiguity models to market settings. We add to the ambiguity literature empirically

by (i) introducing a methodology for measuring the aggregate market ambiguity attitude (i.e.,

the ambiguity attitude of the representative agent) and aggregate market ambiguity; (ii) demon-

strating that market ambiguity attitude generates time variation in the risk-return tradeoff; (iii)

showing a strong empirical link between market ambiguity attitude and the skewness of the market

risk-neutral distribution; (iv) documenting that market ambiguity attitude predicts stock market

crashes, consistent with the theoretical implication that a high level of market ambiguity attitude

reflects an over-valued market relative to the expected utility benchmark; (v) showing empirically

that market ambiguity attitude predicts recessions, and thereby provides a new empirical link

between the stock market and the real economy; (vi) demonstrating that the resulting expected

return forecasts generated by the interaction between market volatility and market ambiguity atti-

tude outperform the passive strategy that buys and holds the market portfolio and earns significant

factor-adjusted returns relative to leading factor models in an out-of-sample investment application;

and (vii) revealing that market ambiguity attitude is not far from the ambiguity attitude measured

in lab experiments (Dimmock et al., 2015; Baillon et al., 2018), but that market ambiguity is smaller

than ambiguity measured in experiments, consistent with the market representative agent being

closer to the expected utility benchmark than individual decision makers.

Second, our paper contributes to the theoretical literature on ambiguity models in market

settings by (i) introducing a representative agent asset pricing model with ambiguity, building

on Chateauneuf et al. (2007), and Zimper (2012); (ii) deriving a theoretical relationship between a

behavioral measure of ambiguity and a market-based measure of economic uncertainty (the variance

risk premium); (iii) deriving a theoretical relationship between market ambiguity attitude and the

skewness of the risk-neutral distribution; and most importantly, (iv) demonstrating theoretically

that ambiguity attitude flattens the slope of the risk-return tradeoff. We obtain this prediction from
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a simple asset pricing formula that provides the theoretical foundation for our empirical analysis.

Our third contribution is to the equity premium literature and the risk-return tradeoff. The

presence of this tradeoff for the aggregate stock market (whether market volatility positively predicts

excess returns) has been investigated and debated in many empirical studies. However, the empirical

evidence has been mixed. French et al. (1987), Baillie and DeGennaro (1990), Campbell and

Hentschel (1992), Ghysels et al. (2005), Lundblad (2007), Guo and Whitelaw (2006), Brandt and

Wang (2007), and Pástor et al. (2008) find a positive risk-return tradeoff. However, Campbell

(1987), Nelson (1991), Whitelaw (1994), Brandt and Kang (2004), and Lettau and Ludvigson

(2010) find a negative risk-return relation. As noted by Yu and Yuan (2011), “numerous studies

over the past three decades find rather mixed empirical evidence of such a relation” (p.367). Yu

and Yuan (2011) reconcile the evidence by finding that the slope of the mean-variance relation is

flat (steep) at times of high (low) sentiment. However, we find that including sentiment does not

produce a significant positive coefficient on market volatility over our more recent sample period.

Instead, we show that including market ambiguity attitude produces a positive risk-return tradeoff,

both theoretically and empirically, using both in-sample and out-of-sample tests.2

A preview of our results shows that across our sample period, 1990 – 2022, market volatility

fails to positively predict the equity premium. However, when including the interaction between

market ambiguity attitude and market volatility, the coefficient on market volatility is positive

and significant while the interaction term is negative and significant, as predicted by the theory in

Section 2. In out-of-sample tests, the out-of-sample R-squared (R2
OS) at the one-month forecast

horizon increases from -0.16% to 4.06% when the interaction term is added to the regression.

Results then differentiate our method from the Baker and Wurgler sentiment index. We find

that ambiguity attitude and market volatility subsumes the BW predictive power for the risk-return

trade-off. Out-of-sample results further document that our ambiguity attitude series has significant

predictive power in forecasting returns. A real-time investment strategy based on our model leads

to a near doubling of the Sharpe ratio; e.g., it increases from 0.48 for the historical average to

2More recently, Zhang and Zhou (2023) use the economic policy uncertainty (EPU) index of Baker et al. (2016)
as a proxy for un-spanned uncertainties and finds that it helps explain the breakdown of the risk-return tradeoff. In
unreported regressions, we find that our results are robust to including the lagged EPU index and that both market
volatility and the interaction between market volatility and market ambiguity attitude remain significant. Further
recent work by Liu et al. (2021) and Yang (2022) finds respectively that different degrees of extrapolative weighting
or infrequent large volatility shocks can explain the risk-return tradeoff.
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0.80 and certainty equivalence rises from 2.0 to 8.1. Ambiguity attitudes also generate a signifi-

cant annualized Fama-French six-factor alpha of 6.5%. Goyal Welch graphs further illustrate that

the market ambiguity attitude consistently outperforms the historical average benchmark over the

out-of-sample period. Lastly, we investigate the sources of the predictive power of ambiguity atti-

tudes. We document that a high ambiguity attitude predicts market crashes and NBER recessions,

highlighting a new link between returns, bear markets and the real economy.

The relationship between the risk-return tradeoff and market ambiguity attitude is not sub-

sumed by standard equity premium predictors. In a kitchen sink regression for predicting the log

equity premium with lagged market volatility and 11 prominent lagged equity premium predictors

in the recent literature from Cederburg et al. (2023), the adjusted R2 is 4.1%. Adding the interac-

tion term between lagged market volatility and lagged market ambiguity attitude to that regression

roughly doubles the adjusted R2 to 8.3%. The coefficient on market volatility changes from being

negative and insignificant in the former regression to positive and significant in the latter, while the

interaction term is negative and significant. In a regression with lagged market volatility and 25

lagged equity premium predictors including the 14 widely used monthly equity premium predictors

from Welch and Goyal (2008) and 11 equity premium predictors from Cederburg et al. (2023), the

adjusted R2 is 7.9%. Adding the interaction term to that regression increases the adjusted R2 to

11.1%, and the coefficients on market volatility and the interaction term remain significant. These

results show that market ambiguity attitude adds substantial gains in predictive power beyond that

accounted for by the standard equity premium predictors.

Market ambiguity attitude also improves the stability of the estimated coefficients for market

volatility. For instance, at the three-month forecast horizon, the estimated volatility coefficient

changes sign from -0.18 to 0.53 over the two halves of the sample period. In contrast, when the

interaction between market ambiguity attitude and market volatility is included, the coefficient

estimates on market volatility are 1.31 and 1.34 in the two halves of the sample period and they

are not significantly different.3

The α−maxmin multiple priors framework from Ghirardato et al. (2004), of which the NEO-EU

3Goyal et al. (2021) provide the following criterion as an important requirement that successful equity premium
predictors should satisfy: “The model should be reasonably stable, i.e., a variable should not have statistically
significantly different IS coefficients and/or a sign change in predicting the equity premium in our sample’s first
half and second half—for us, at least at the 5% level. If this fails, there is little reason to proceed.” (IS denotes
‘in-sample’.)
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model of Chateauneuf et al. (2007) is a notable special case, is a prominent axiomatic framework

from decision theory in which aversion and affinity to ambiguity coexist. The α−maxmin multiple

priors framework and the NEO-EU model have been studied in laboratory experiments at the

level of individual behavior (Baillon and Bleichrodt, 2015; Baillon et al., 2018; Dimmock et al.,

2015; Kocher et al., 2018; König-Kersting et al., 2023) and in market experiments (Bossaerts et al.,

2010). The α-maxmin model has also been applied to asset pricing theory (Chateauneuf et al.,

2007; Zimper, 2012; Anthropelos and Schneider, 2022). However, it has not yet been applied to the

risk-return tradeoff, and it has not been investigated empirically using stock market data.

2. The NEO-EU CAPM

2.1. The Representative Agent

The α-maxmin multiple priors model (Ghirardato et al., 2004) is one of the primary frameworks

for studying attitudes toward ambiguity in the decision theory literature. Let S represent a set of

possible future states of nature, C a set of consumption levels, and F a set of acts where an act,

f : S → C assigns a consumption level to each state. One state s ∈ S will be realized but that

true state is presently unknown. Subsets of S are referred to as events. Let Ω denote the set of all

possible events. Let ∆(S) denote the set of all probability distributions on S.

It is typical to write the α-maxmin value function with α as the weight on the worst-case

expected utility. However, the original NEO-EU model formulation includes α as the weight on the

best-case expected utility and in the present context that formulation is more intuitive to describe

how α flattens the slope of the risk-return relation.

DEFINITION 1: An α-maxmin agent has the following value function for an act f:

V (f) = α max
P∈M

EP u
(
C(s)

)
+ (1− α) min

P∈M
EP u

(
C(s)

)
, (1)

where M ⊆ ∆(S) is a closed convex set of prior distributions that the agent deems plausible given

the agent’s information. In (1), α represents the agent’s attitude (degree of optimism) toward

ambiguity, and EP u
(
C(s)

)
is the agent’s expected utility with respect to prior distribution P ∈ M .

In empirical applications, it is often useful to assume a parameterized set of prior distributions.
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A common specification of M is the following (Chateauneuf et al., 2007; Dimmock et al., 2015):

Mγ = {P ∈ ∆(S) : P(E) ≥ (1− γ)π(E)}, (2)

for all E ∈ Ω, where γ ∈ [0, 1]. In (2), the agent has a reference prior distribution, π, and a degree

of confidence in that reference prior of 1− γ. As summarized in Dimmock et al. (2015), the set of

priors Mγ implies the following restrictions on the probability distributions P ∈ Mγ :

0 ≤ (1− γ)π(E) ≤ P(E) ≤ (1− γ)π(E) + γ ≤ 1.

for all E ∈ Ω. Dimmock et al. (2015) note that the set of priors Mγ “allows the probability

P(E) to vary in an interval of length γ around the reference probability π(E).” In this model, γ is

interpreted as the level of perceived ambiguity and the model reduces to the standard subjective

expected utility model when the agent perceives no ambiguity (corresponding to γ = 0).

Chateauneuf et al. (2007) show that the α-maxmin model in (1) combined with the set of

priors in (2) is equivalent to the NEO-EU representation of preferences in Equation (3) for which

they provide an axiomatic foundation. A NEO-EU (non-extreme outcome expected utility) agent

maximizes a weighted average of the expected utility of an uncertain prospect and the Hurwicz

value of the prospect which takes a convex combination of the best and worst-case utilities.4

DEFINITION 2: A NEO-EU agent has the following value function for an act f :

V (f) = (1− γ)Eπu
(
C(s)

)
+ γ

(
αu(C) + (1− α)u(C)

)
. (3)

In (1), V (f) is the valuation of act f for the NEO-EU agent, Eπu
(
C(s)

)
is the agent’s expected

utility (EU) from consumption under act f with respect to her subjective probability distribution,

π, while u(C) and u(C) are, respectively, the utility from the best-case and worst-case consumption

levels across states under f . These preferences separate the agent’s beliefs, ambiguity attitude, α,

and perceived level of Knightian uncertainty, γ. The agent’s ambiguity attitude can range from pure

ambiguity aversion or pure pessimism (α = 0) to pure ambiguity seeking or pure optimism (α = 1).

The agent’s perceived level of ambiguity, γ, ranges from no ambiguity (γ = 0), in which case the

4We restrict our attention to acts that are simple functions as in Lemma 3.1 of Chateauneuf et al. (2007).
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agent maximizes expected utility with respect to her subjective prior distribution, π, to complete

uncertainty (γ = 1), where the agent places no confidence in her prior and relies on the Hurwicz

criterion for robust decision making which is robust to all prior distributions over the same support.

The NEO-EU model nests expected utility preferences (γ = 0), and the ϵ-contamination model of

ambiguity aversion (γ ∈(0,1], α = 0), two prominent theoretical benchmarks in the literature (Dow

and da Costa Werlang, 1992).

The NEO-EU model accommodates aversion toward left-tail ambiguity and a preference for

speculating on right-tail ambiguity. By overweighting the extreme outcomes, Chateauneuf et al.

(2007) show that the NEO-EU model explains the behavior of a consumer who purchases both

lottery tickets and insurance, which has been a challenge for EU since its inception (Friedman

and Savage, 1948; Ebert and Karehnke, 2021). More generally, the NEO-EU model generates

a preference for ambiguity over low-likelihood events and an aversion to ambiguity over high-

likelihood events, consistent with the experiments in Baillon and Bleichrodt (2015) and Kocher

et al. (2018). Since the focus of our empirical strategy is to capture the low-frequency movements

in the risk-neutral probability of tail events, NEO-EU is a natural choice among ambiguity models

for our application. In contrast this overreaction to both positive and negative tail events is not

captured by popular ambiguity models that permit only uniform ambiguity attitudes, such as the

smooth model of ambiguity aversion (Klibanoff et al., 2005), the maxmin multiple priors model,

(Gilboa and Schmeidler, 1989), robust control preferences (Hansen and Sargent, 2001), and the

ϵ-contamination model (Dow and da Costa Werlang, 1992).

The NEO-EU model can also be viewed as characterizing an agent with prospect theory prob-

ability weighting who overweights the tails of the distribution. That is, the same functional rep-

resentation of preferences can be interpreted as a model of choice under risk as a special case of

rank-dependent utility (Quiggin, 1982) in which the agent knows the distribution but is system-

atically biased and overweights the tails relative to an unbiased expected utility agent (Dimmock

et al., 2021). The rank-dependent utility formulation of the NEO-EU model can be parameterized

to reflect the agent’s degree of optimism and the agent’s degree of insensitivity to objectively known

probabilities (referred to as likelihood insensitivity). In this formulation, α reflects the agent’s de-

gree of optimism toward risk ranging from pure pessimism (α = 0) to pure optimism (α = 1).

Wakker (2010) notes that the probability weighting function embedded in (3), is among the most
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promising families of weighting functions in the literature and “the interpretation of its parameters

is clearer and more convincing than with other families.”

2.2. Equilibrium

Motivated by Chateauneuf et al. (2007) and Zimper (2012), we consider an asset pricing model

with a NEO-EU representative agent. Our goal is not to develop a full-fledged dynamic general

equilibrium model, but rather to develop a transparent model that highlights the mechanism and

underlying intuition and that serves as a guide for our empirical analysis. As in Chateauneuf et al.

(2007), we present our analysis in a simple two-period model in which the economy has one risky

asset representing the aggregate stock market and a risk-free bond in zero net supply. The risky

asset’s price in period t is Pt, and its stochastic payoff in state s in period t + 1 is Xt+1(s). The

risk-free bond’s price in period t is P b
t , and its payoff is one unit of consumption with certainty.

We consider the simplest case of the NEO-EU model in which the agent has linear utility. This

specification thus focuses exclusively on the effects of ambiguity and ambiguity attitude. The

agent’s discounted utility in period t of a given consumption level in period t+1 is δCt+1(s), where

δ ∈ (0, 1) is the agent’s time discount factor. To simplify notation, in our subsequent analyses, for

any variable θ, we define θt+1 := θt+1(s), and we denote the corresponding conditional expectation

by Etθt+1 := Eπ,tθt+1(s). At time t, the agent chooses its level of consumption and investment to

maximize:

max
{Ct,Bt,St}

Ct + (1− γt)δEtCt+1 + γtδ[αtCt+1 + (1− αt)Ct+1], (4)

where EtCt+1 is the time t expected utility of consumption in period t + 1, and Ct+1 and Ct+1

are utilities from the perceived best (optimistic) and worst (pessimistic) case consumption levels

in period t+ 1. Note that the conditional expected utility, EtCt+1, and the conditional maximum

and minimum consumption levels, Ct+1 and Ct+1 are known to the agent at time t. Moreover, γt

and αt represent the agent’s perceived ambiguity and ambiguity attitude at time t. The budget

constraints at time t and t+ 1 are Ωt = Ct + P b
t Bt + PtSt, and Ct+1 = Bt + StXt+1 +Ωt+1, where

St and Bt are the agent’s position in the risky and risk-free assets in time t, and Ωt is the agent’s

endowment at time t.
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Under the linear utility specification, buying one unit of stock at time t has a marginal (utility)

cost of Pt, and its payoff Xt+1 has a marginal utility gain of (1− γt)δEtXt+1 + γtδ(αtXt+1 + (1−

αt)Xt+1). Thus, the equilibrium price Pt adjusts to equate the current marginal utility cost to the

discounted marginal utility gains, that is:

Pt = (1− γt)δEt[Xt+1] + γtδ(αtXt+1 + (1− αt)Xt+1). (5)

The price of a risky asset is a weighted average of a fundamental component, δEt[Xt+1], i.e., the

asset’s discounted expected value, that reflects the agent’s information, and a noise component,

δ(αtXt+1 + (1−αt)Xt+1), that is a function of the agent’s optimism and pessimism toward uncer-

tainty, reflecting the agent’s ambiguity preferences. The relative strength of these two components

depends on the agent’s perceived level of uncertainty in the market, γt, with the agent relying less

on its information at times of high uncertainty.

As indicated in the introduction, the pricing formula provides an intuitive explanation why

deviations from market efficiency are expected to occur in periods of high ambiguity. In the

absence of ambiguity (γt = 0), the price fully reflects the information component. As ambiguity

increases (i.e., for higher values of γt), prices increasingly reflect the market’s ambiguity attitude,

αt, which is impounded in prices along with the information component. In this case, prices may

deviate from the textbook notion of efficiency (that prices fully reflect available information), as

they partially reflect information and partially reflect the market’s ambiguity attitude.

Given that return in state s is the payoff in state s, divided by the price, we have Rt+1 = Xt+1/Pt

and hence, we express (5) as the following Euler equation:

(1− γt)Etδ[Rt+1] + δγt
(
αtRt+1 + (1− αt)Rt+1

)
= 1. (6)

Similar reasoning for the risk-free bond gives us P b
t = δ and thus:

δRf,t = 1. (7)
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2.3. The Equity Premium

Subtracting (7) from (6) and rearranging terms yields the equity premium:

EtRt+1 −Rf,t =

[
(Rf,t −Rt+1)

]
αtγt

(1− γt)︸ ︷︷ ︸
Speculation Premium

+

[
(Rf,t −Rt+1)

]
(1− αt)γt

(1− γt)︸ ︷︷ ︸
Uncertainty Premium

. (8)

Equation (8) decomposes the equity premium into two terms. We refer to the first term as a

speculation premium, and it is negative, reflecting that investors pay to hold stocks that are more

exposed to market optimism (or a market boom). The speculation premium becomes larger in

magnitude with higher market optimism, αt, market positive skewness, Rt+1, or market uncertainty,

γt. The second term is an uncertainty premium that becomes larger in magnitude with higher

market ambiguity aversion, (1− αt), market disaster risk (lower Rt+1), or market uncertainty, γt.

Representation (8) includes a role for market optimism (αt), Knightian uncertainty (γt), posi-

tive skewness (Rt+1), and disaster risk (Rt+1), thereby unifying these strands of the asset pricing

literature. Since (8) permits deviations from rational expectations consistent with the NEO-EU

model, we refer to (8) as the NEO-EU CAPM.

2.4. Best and Worst States

To apply the model empirically, we parameterize the best and worst-case returns perceived by

the agent. To do so, let µt := EtRt+1 and qt := σt(Rt+1):

ASSUMPTION 1: The agent’s perceived return in state s ∈ S in period t+1 is Rt+1(s) = µt+ξsqt.

Under Assumption 1, the perceived highest and lowest returns across states are then Rt+1 =

µt + ξqt and Rt+1 = µt − ξqt, where ξ := maxs∈S ξs, and ξ := |mins∈S ξs|. Assumption 1 specifies

returns to be within an interval of the asset’s perceived mean return, and the size of this interval

increases with market volatility, qt. In our empirical analysis, we consider the simplest case in

which the endpoints of the interval are symmetric around the mean (i.e., in which ξ := ξ > 0 and

ξ := ξ). In this case, the agent perceives returns to be in a “confidence interval” that is a fixed

number (ξ) of standard deviations above or below the mean.

The model implied equity premium in (8) together with Assumption 1 yield a simple expression

for the equity premium stated in the following proposition.
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PROPOSITION 1: (Market ambiguity attitude and the risk-return tradeoff) The equity premium

with a NEO-EU representative agent and linear utility who perceives the state space according to

Assumption 1 is:

EtRt+1 −Rf,t = ξγtqt − (ξ + ξ)αtγtqt. (9)

Importantly, ambiguity attitude αt moderates the slope of the relation between expected excess return

and risk (measured as market volatility qt). In the symmetric case where ξ = ξ = ξ:

EtRt+1 −Rf,t = ξqtγt(1− 2αt). (10)

Proof. Replace Rt+1 = µt+ ξqt and Rt+1 = µt− ξqt (obtained from Assumption 1) in Equation (8)

and rearrange the terms.

We expect an ambiguity attitude αt less than 0.5, reflecting a bias towards ambiguity aversion

rather than optimism. Empirical estimates of αt measured in lab experiments (Dimmock et al.,

2016; Baillon et al., 2018) also report αt < 0.5, which implies a positive relationship between risk

and expected returns. Moreover, a higher level of optimism αt means a shallower slope, i.e., a lower

reward for accepting risk.

2.5. The Variance Risk Premium

The variance risk premium (VRP), the difference between the risk-neutral and physical market

variance is commonly interpreted as a measure of economic uncertainty (Zhou, 2018; Bali and

Zhou, 2016). Formally, the VRP is defined as VRPt ≡ VarQt Rt+1 −VarPt Rt+1 (Zhou, 2018), where

VarQt and VarPt are the conditional variance under the risk-neutral and physical measures. For the

NEO-EU agent with linear utility, the VRP is the following:

V RPt = (1−γt)Et(Rt+1−ẼtRt+1)
2+γt

[
αt(Rt+1−ẼtRt+1)

2+(1−αt)(Rt+1−ẼtRt+1)
2
]
−q2t . (11)

PROPOSITION 2: Under Assumption 1, with ξ = ξ = ξ, the variance risk premium for a NEO-EU
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agent with linear utility can be approximated as the following:

VRPt ≈ γtq
2
t (ξ

2 − 1). (12)

Proof. See the Appendix.

In Proposition 2, the VRP approximation is independent of the market ambiguity attitude,

αt. The propositions thus provide a partial separation between ambiguity and ambiguity attitude.

Further, Proposition 2 provides a theoretical link between a market-based measure of Knightian

uncertainty (VRP) and a behavioral measure of Knightian uncertainty, γt. Moreover, γt (scaled by

the constant ξ2 − 1) serves as a wedge between V RPt and q2t .

2.6. Taking the Model to Data

In this subsection, we use the model expressions from the previous subsections to extract a

measure of ambiguity attitude αt. To that end, we first estimate qt from a GARCH model and use

it to construct a measure of γt. Then, αt can be estimated using a Markov switching model. The

details are provided below.

First, we measure qt via a simple GARCH(1,1) model for the log returns, where pdt is the

price-dividend ratio for the S&P 500 index and is used to construct a measure of the expected

equity premium:5

log(Rt+1) = θ0 + θ1pdt + ut+1,

ut+1 = qt+1zt+1, with zt+1 ∼ N (0, 1)

q2t+1 = ω0 + λ1u
2
t + β1q

2
t .

In this specification, the log market return is linear in the price-dividend ratio (pdt), and the

error is assumed to follow a GARCH(1,1) process. Lemma 1 in the Appendix shows how the log

return is approximately linear in the price-dividend ratio when we replace the payoff with dividends.

The estimation not only provides us with an estimate of the conditional market volatility q̂t, but

5The dividend price ratio is also used as a proxy for the equity premium empirically in Pástor and Veronesi (2020)
and is closely related to the equity premium in traditional macro-finance models.
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also yields a conditional market equity premium based on the conditional expected return and the

market risk free rate EtRt+1−Rf,t ≈ exp(θ̂0+ θ̂1pdt)−Rf,t.
6 For notational convenience, we denote

the conditional equity premium by EPt ≡ EtRt+1 −Rf,t.

Having established a theoretical link between market ambiguity attitude and the risk-return

tradeoff, our next objective is to provide an estimate of the time series of αt using the structural

equations from the model under Assumption 1 and linear utility.

Second, following Zhou (2018) and Bekaert and Hoerova (2014), we use the square of the VIX

index as a proxy for the risk-neutral variance, VarQt Rt+1. Then using formula (12) we find γt to be:

γ̂t ≈
1

ξ2 − 1

(VIX2
t

q̂2t
− 1

)
. (13)

Finally, we use the relationship, EPt = ξ(1−2αt)qtγt from Equation (10) to estimate αt. In line

with the intuition that αt has persistent dynamics, we let αt follow a Markov-switching structure

with two states. Note that the relationship implies ξ(1−2αt) =
EPt

qtγt
. Thus, if αt follows a Markov-

switching model, so does the ratio
EPt

qtγt
. To estimate αt, we estimate the following Markov-switching

dynamic regression model

ÊPt

q̂tγ̂t
= µmt + ϵt, (14)

where ϵt is a white noise and µmt switches between two regimes according to a probability matrix.

The estimated model gives us a predicted value of µ̂mt using the information up to and including

time t. We then find our estimate of αt according to

α̂t =
1

2

(
1− µ̂mt

ξ

)
. (15)

Importantly, both qt and αt are estimated dynamically so that only the information up to period

t is used in the estimation of q̂t and α̂t to avoid look-ahead bias. To elaborate, qt is estimated from

a GARCH model that uses data for the first half of the sample period (through June, 2006).

Starting with the beginning of the out-of-sample period (July, 2006), we then run the GARCH

model every period with an expanding window to estimate qt using only information up through

6Allowing for the second order (Jensen) term virtually makes no difference in the final estimates.
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period t. Similarly, the parameters of the Markov-switching model are estimated for the first half

of the sample period. For the out-of-sample period, the Markov-switching model is re-estimated

every period t using information only up through period t, and we obtain a new estimate of αt each

period that uses information only up through period t.

The quantity
EPt

qtγt
is a measure like a conditional Sharpe ratio but which includes a role for

market ambiguity, γt. In the Markov-Switching model there are two regimes: (i) a bear market

regime with relatively low prices and high expected future returns per unit of risk, and (ii) a bull

market regime with relatively high prices and low expected future returns per unit of risk. Market

optimism, αt, is then increasing in the probability of the bull market regime.

As market ambiguity is directly linked to the VRP by the model, and as Knightian uncertainty

or ambiguity by itself has received much attention in prior literature, we focus on the new aspect

of our approach which is the time series of market ambiguity attitude. This focus also reflects

the motivation of the paper which is to investigate if market ambiguity attitude moderates the

risk-return tradeoff which is predicted by the theory studied here. Assuming γt has little or no

predictive content due to its low auto-correlation, qt and αt contain all of the information about

the conditional equity premium in Equation (10).7

3. Properties of Market Ambiguity Attitude

3.1. The Level of Market Ambiguity and Ambiguity Attitude

The mean value of α is reasonably close to laboratory estimates from studies on individual

decision making. In a representative sample, Dimmock et al. (2015) estimates α = 0.44. In a lab

experiment with a stock market setting, Baillon et al. (2018) estimates α = 0.45. For candidate

values of ξ (truncating the return distribution at 2, 3, or 4.77 standard deviations), the estimated

α ranges between 0.42 and 0.27. The market-based estimates provided by our study indicate

that market ambiguity attitude is not far from the ambiguity attitudes of individual agents. Our

market γ is considerably smaller than laboratory estimates. Dimmock et al. (2015) estimates γ to

be 0.40. Baillon et al. (2018) estimates γ to be 0.52. The aggregate market is less biased relative to

7We estimate that α has a one-month auto-correlation of 0.97, q has a one-month auto-correlation of 0.94, and γ
has a one-month auto-correlation of 0.46.
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the expected utility benchmark (revealed by a lower γ) and hence perceives less uncertainty than

individual agents. This information is summarized in Table 1.

Table 1. Estimates of Ambiguity Attitude (α) and Ambiguity Perception (γ)

Laboratory Estimates Market Estimates

BBKHL DKMP ξ = 2 ξ = 3 ξ = 4.77

α 0.45 0.44 0.42 0.36 0.27
γ 0.52 0.40 0.31 0.13 0.05

Notes: The two leftmost columns display the estimated ambiguity attitude (degree of optimism), α, and ambiguity

perception, γ, in the NEO-EU framework estimated from the individual choice experiments of Baillon et al. (2018)

(BBKHL) and Dimmock et al. (2015) (DKMP). The remaining three columns display the mean α and γ estimated

from market data for different values of the truncation parameter, ξ.

We use the specification ξ = 4.77, since it implies a best-case return and worst-case return that

are roughly consistent with common definitions of a bull market and a bear market in the media

and on Wall Street (Kurov, 2010). The specification does not rely on information in the out-of-

sample period. Over the training sample period, the monthly mean market volatility, q, is 4.05%

and the monthly mean expected market return from the GARCH model is 0.74%. Computing the

maximum return under Assumption 1 with these values yields R = 0.0074 + 4.77(0.0405) ≈ 0.20.

This is consistent with the threshold for a bull market (a return of 20% from a market’s recent

low). The corresponding worst-case return is approximately -0.19, and similar to the threshold for

a bear market (a return of -20% from a market’s recent high). Since ξ is constant, ξ affects the

level but not the time variation of α. Consequently, our results are robust to different values of ξ.

Of particular note, our main metrics for forecast evaluation (the in-sample and out-of-sample R2

and the difference in cumulative sum of squared forecast errors presented in Section 4) are identical

for all ξ ∈ [2, 4.77].8

3.2. Time Variation in Market Ambiguity Attitude and the Risk-Neutral Distribution

This section motivates and illustrates what α captures empirically. Intuitively, a smaller αt,

consistent with a more pessimistic NEO-EU representative agent, leads to greater negative skewness

8A positive feature of a specification with ξ ≤ 4.77 is that α ∈ (0, 1) for all periods in our sample spanning more
than 30 years of monthly data. Under specifications with ξ > 5, the estimated α becomes negative in some periods.
Truncating α at zero in those periods will slightly affect the R2.
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of the risk-neutral probability density. That is, one might expect the skewness of the risk-neutral

density to increase in αt. To investigate this relationship, we first provide a formal proposition in

which market risk-neutral skewness (RNS) is increasing in αt. The proposition provides an upper

bound on γt necessary for this increasing relationship between RNS and αt. Next, we test if αt

correlates positively and significantly with RNS. To push the proposition further, we test if the

correlation between αt and RNS is higher when the difference between the upper bound provided

by the proposition and γt is high and so the condition necessary for the increasing relationship

between RNS and αt is more easily met. We also plot αt and RNS to visualize the relationship,

and we conduct Granger causality tests to infer potential dependencies between αt and RNS.9

We document a positive and significant correlation of 0.40 between αt and RNS across the

OOS period in Table 12 in the Online Appendix. Remarkably, the correlation more than doubles

when comparing αt and the product of RNS and an indicator variable that equals one when the

difference between the upper bound from Proposition 3 and γt is above its median value. When

graphing these relationships, shown in Figure 1, it is apparent that αt looks like a smooth version of

RNS. These observations indicate that market ambiguity attitude, αt, contains information about

low-frequency movements (and hence the more predictable variation) in RNS.

Building on Proposition 1, the risk-neutral distribution has most of its mass in the middle (from

the physical distribution), and on the two extreme events (the best and worst case returns). The

NEO-EU model implies that the weight of the risk-neutral measure in the middle of the distribution

is 1−γt, on the best case return is γtαt, and on the worst case return is (1−γt)αt. To focus on the

effect of αt on the skewness of the risk-neutral distribution, we find that it is (empirically) enough

to approximate the risk-neutral distribution with three points: the worst case, the middle, and the

best case returns, giving us the following proposition.

PROPOSITION 3: Approximating the risk-neutral distribution implied by the NEO-EU represen-

tative agent as a three-point distribution, the skewness of the risk-neutral distribution is increasing

in αt if γt <
1

1+8αt(1−αt)
.

9Market risk-neutral skewness is measured from the SKEW index of the CBOE. RNS = E[(R−µ
σ

)3], where R is the

30-day log-return on the S&P 500, µ and σ are respectively the mean and standard deviation of R, x := (R−µ
σ

)3 and
RNS = E[x]. RNS is obtained from the SKEW index by the relation RNS = 100−SKEW

10
. (See https://cdn.cboe.

com/resources/indices/documents/SKEWwhitepaperjan2011.pdf). The series is converted from the daily frequency
to the monthly frequency using the last observation in each month as the RNS value for that month.
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Proof. See the Appendix.

Supporting Proposition 3 empirically, we find that αt is positively and significantly correlated

with market risk-neutral skewness (RNS). Motivated by the proposition, we test if the correlation

between αt and market risk-neutral skewness is higher when 1
1+8αt(1−αt)

− γt is high so that the

inequality relating difference between the upper bound on γt necessary for the proposition to hold

and γt, has more slack. To do so, we construct an indicator variable that equals one if 1
1+8αt(1−αt)

−γt

is above its median value over the OOS period (0.386) and zero otherwise, and we compute the

product of this indicator variable and the market risk-neutral skewness. We find that the correlation

between αt and the product of RNS and the indicator variable is 0.85 as shown in Table 12 in the

Appendix. Both relationships are plotted in Figure 1. Clearly, when the value 1
1+8αt(1−αt)

− γt is

farther from zero, the correlation between RNS and αt is also higher.

From Figure 1, it appears that αt looks like a smoothed version of RNS. To further investigate

the relationship between αt and RNS, we conduct Granger causality tests using the optimal lag

lengths according to the Bayesian Information Criterion (one period) and according to the Akaike

Information Criterion (two periods). As we show in Table 13 in the Appendix, in both tests, αt

significantly Granger causes RNS at the 5% significance level, whereas RNS does not Granger cause

αt (with p-values above 0.80 in both cases).

Recall that in theory, variation in α measures variation in the market risk-neutral probabilities

of tail events (for both the right and left tail). We have seen in this section that empirically,

α reflects low-frequency movements in the SKEW index of the CBOE. The SKEW index was

introduced by the CBOE as an “indicator that measures perceived tail risk” and the CBOE notes

that it is intended to be complementary to the VIX index (CBOE, 2011). The fact that α, whose

construction does not depend on SKEW, recovers the low frequency movements in SKEW consistent

with theory, shows the potential relevance of the NEO-EU model for empirical finance applications.
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Figure 1. NEO-EU Optimism (α) and Market Risk-Neutral Skewness (RNS)
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Notes: The top figure displays the time series of the market risk-neutral skewness (RNS) from the Chicago Board of

Options Exchange, and the recursively updated market ambiguity attitude series (α). The bottom figure displays α

and the product of market risk-neutral skewness and an indicator variable that equals one if the difference between

the upper bound on γ in Proposition 3 and γ is above its median value (0.386) over the out-of-sample period (RNS

× Indicator). Both figures span the out-of-sample period for α (2006:07 through 2022:12). Over this period, the

correlation between the two series in the top figure is 0.40, and the correlation between the two series in the bottom

figure is 0.85. For the purpose of comparison, all series have been standardized to have a mean of zero and a standard

deviation of one over this period. Shaded areas show the NBER recession periods.
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4. The Risk-Return Tradeoff

Under Proposition 1, there is a positive relationship between market volatility, qt, and the

expected equity premium, but the slope of this relationship flattens as market optimism, αt, in-

creases.10 Our first analysis is motivated by three basic questions: First, does market ambiguity

attitude moderate the risk-return tradeoff as predicted by Proposition 1? Second, if so, is the

predictive power of market volatility, qt, and the interaction between market ambiguity attitude

and market volatility, αtqt subsumed by standard equity premium predictors? Third, what is the

incremental increase in predictive power generated by including αtqt in the predictive regressions,

beyond that delivered by the standard equity premium predictors? To probe these questions, we

consider 25 equity premium predictors consisting of the 14 predictors in Welch and Goyal (2008)

available at the monthly frequency and the 11 newer predictors used by Cederburg et al. (2023)

for which data is available beginning in January, 1990.11 For q and α, our data begins in 1990

(the first year available for the VIX which is needed for the construction of α) as it is a common

measure of the risk-neutral variance. For details about the construction of the 25 predictors, see

Welch and Goyal (2008), Cederburg et al. (2023).

Table 2 reports regressions following Equation (16). The full specification is a regression of the

(realized) log equity premium, denoted Re
t , in period t against market volatility (qt−h), the product

of market ambiguity attitude and market volatility (αt−hqt−h), and a set of k alternative equity

premium predictors. All predictors are lagged h periods. The table considers the simplest case

(with lagged market volatility as the only regressor), as well as the case that includes αt−hqt−h

and additional specifications with various sets of control variables. We present the results using

monthly data for both the one-month forecast horizon, corresponding to h = 1 and the three-month

forecast horizon corresponding to h = 3 in the regressions. We refer to the former as the monthly

forecast horizon, and the latter as the quarterly forecast horizon.

10Our analysis is guided by the model prediction that αt moderates the risk-return tradeoff (i.e., the relevant
variables are qt and αtqt). For this reason and due to multicollinearity, we omit αt from these regressions.

11This criterion enables us to include predictors that span the period 1990 - 2021, and omits only the left-tail
jump variation (LJV) predictor from Cederburg et al. (2023) for which available data begins in 1996. Including that
variable does not affect the results.
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Re
t = β0 + β1qt−h + β2αt−hqt−h +Σk

i=3βixi,t−h + ϵt. (16)

In Equation (16), k denotes the total number of predictor variables in the regression. Odd-

numbered regressions in Table 2 do not include αt−hqt−h, while this term is included in even-

numbered regressions. Regressions summarized in columns (1), (2), (9), and (10) show our baseline

results without controls. All data is updated from the original studies to span from 1990:01 -

2021:12. In columns (1) through (8) all predictor variables are lagged by one month (corresponding

to the monthly forecast horizon). In columns (9) through (16) all predictor variables are lagged by

three months (corresponding to the quarterly forecast horizon).

In Table 2, for ease of interpreting the estimated coefficients, the predictors q and αq are divided

by their full-sample standard deviation. Regression specification (2) in the top panel of Table 2

which includes both q and αq reveals that a one standard deviation increase in the conditional

market volatility leads to an increase in the future realized equity premium of 1.35%. In contrast,

a one standard deviation increase in the product of market volatility and market optimism, αq,

leads to a decrease in the future equity premium of -1.36%. Both coefficients have t-statistics above

three, and hence are both statistically significant and economically large. Similar results hold at

the quarterly forecast horizon as shown in regression specification (2) in Panel B of the table.

Table 2 answers our three questions. Regarding the first question, the table shows in Column (1)

of Panels A and B that the relationship between Re
t and lagged market volatility is not significant

at the monthly or quarterly horizon. These regressions confirm the findings of Campbell (1987),

Nelson (1991), Whitelaw (1994), Brandt and Kang (2004), Lettau and Ludvigson (2010), and

Barroso and Maio (2023) that the risk-return relationship is neither strong nor robust in the data.

The regressisons reveal that the absence of a clear risk-return tradeoff for the aggregate stock market

continues to be a puzzle even when using more recent data than prior studies. In contrast, adding

the interaction between market ambiguity attitude and market volatility to the regression yields a

significant positive relation between Re
t and lagged market volatility, q, and a significant negative

relationship between Re
t and lagged αq as noted in the preceding paragraph. These findings support

the theoretical prediction that market ambiguity attitude moderates the risk-return tradeoff.
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Table 2. Market Ambiguity Attitude and the Risk-Return Tradeoff controlling for 25 Predictors

Monthly Forecast Horizon

(1) (2) (3) (4) (5) (6) (7) (8)
Panel A Re

t Re
t Re

t Re
t Re

t Re
t Re

t Re
t

qt−1 0.30 1.35∗∗∗ 1.49∗∗∗ 2.73∗∗∗ -0.10 1.71∗∗∗ 1.10∗∗ 2.86∗∗∗

(1.18) (5.44) (4.07) (4.45) (-0.28) (2.98) (2.34) (3.56)

αt−1qt−1 -1.36∗∗∗ -1.90∗∗∗ -2.10∗∗∗ -2.34∗∗∗

(-3.87) (-2.70) (-4.40) (-3.17)

GWt−h NO NO YES YES NO NO YES YES
CJOt−h NO NO NO NO YES YES YES YES
k 1 2 15 16 12 13 26 27

adj. R2 0.002 0.037 0.050 0.078 0.041 0.083 0.080 0.113

Quarterly Forecast Horizon

(1) (2) (3) (4) (5) (6) (7) (8)
Panel B Re

t Re
t Re

t Re
t Re

t Re
t Re

t Re
t

qt−3 0.33 1.25∗∗∗ 1.01∗∗∗ 1.70∗∗∗ -0.37 0.93∗∗ 0.36 1.23∗∗

(1.51) (4.87) (3.01) (4.19) (-1.14) (2.36) (0.77) (2.32)

αt−3qt−3 -1.20∗∗∗ -1.05∗∗∗ -1.50∗∗∗ -1.15∗∗∗

(-3.48) (-2.83) (-4.70) (-3.32)

GWt−h NO NO YES YES NO NO YES YES
CJOt−h NO NO NO NO YES YES YES YES
k 1 2 15 16 12 13 26 27

adj. R2 0.003 0.029 0.058 0.065 0.057 0.078 0.081 0.087

Newey-West t statistics in parentheses; ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Notes: The table displays regressions of the log equity premium, Re
t , (in percent) against market volatility, q, and

the set of 14 monthly equity premium predictors in Welch and Goyal (2008), the set of 11 newer equity premium

predictors used by Cederburg et al. (2023) for which data are available beginning in January, 1990, and both sets

of predictors. Even-numbered regressions also include αq. In the regression specifications in Panel A, all predictor

variables are lagged by one month (monthly forecast horizon). In the regression specifications in Panel B all predictors

are lagged three months (quarterly forecast horizon). The GW row indicates whether the 14 monthly Welch and

Goyal (2008) predictors are included as controls. The CJO row indicates whether the 11 Cederburg et al. (2023)

predictors available starting in January, 1990, are included as controls. k denotes the number of predictor variables in

the regression including q and the control variables, and αq where applicable. For ease of interpreting the coefficients,

q and αq are divided by their (full sample) standard deviation. The sample period spans monthly data from 1990:01

through 2021:12.
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Regarding our second question, Table 2 shows that neither the Welch and Goyal (2008) predic-

tors nor the Cederburg et al. (2023) predictors collectively subsume the risk-return tradeoff results.

In all six specifications where q and αq are both included in the regressions, the coefficient on q

remains positive and significant while the coefficient on αq remains negative and significant, even in

the presence of 25 standard equity premium predictors as controls. In the absence of αq, the coef-

ficient on q is significant in the presence of the Welch and Goyal (2008) predictors but insignificant

using the more recent Cederburg et al. (2023) predictors.

Regarding the third question, Table 2 shows that including αq in the kitchen sink regressions

substantially improves the predictive power. For instance, the adjusted R2 for regression (5) in

the table which includes the 11 recent predictors in Cederburg et al. (2023) is 4.1%. Adding αq

to that regression roughly doubles the adjusted R2 to 8.3%. This is a remarkable increase in

predictive power relative to a regression that already contains 11 strong equity premium predictors

from the recent literature. As a related example, the adjusted R2 in Regression specification (7)

which includes q in addition to 25 established equity premium predictors is 8%. Adding αq to that

regression increases the adjusted R2 by over 3% to 11.3%.

4.1. Market Sentiment and the Risk-Return Tradeoff

As noted in the introduction, Yu and Yuan (2011) have found that market sentiment, proxied

by the Baker and Wurgler (2006) market sentiment index (BW), moderates the risk-return tradeoff.

We test here if BW moderates the risk-return relationship for our sample period and whether that

relationship explains the moderating effect of market ambiguity attitude. To investigate this, we

run versions of regression Equation (17) which includes market volatility, qt, the product of the

BW index and market volatility (bwtqt), the BW index by itself, and the product αtqt.

Re
t = β0 + β1qt−h + β2bwt−hqt−h + β3bwt−h + β4αt−hqt−h + ϵt. (17)

The results are displayed in Table 3. Regression specification (1) in the table, which includes

only qt and bwtqt as predictors, shows that a one standard deviation increase in the product of the

BW index and market volatility leads to a decrease in the future log equity premium of 0.56% on

average. This significant effect is reduced to an insignificant decrease of 0.13%, when the interaction
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between market ambiguity attitude and market volatility is included in regression specification

(3). From the table, we see that BW does not subsume the predictive power of αtqt. Instead,

the interaction between market ambiguity attitude and market volatility subsumes the predictive

power of BW for the risk-return tradeoff.

Table 3. Market Sentiment and the Risk-Return Tradeoff

Monthly Horizon Quarterly Horizon

(1) (2) (3) (4) (5) (6) (7) (8)
Predictor Re

t Re
t Re

t Re
t Predictor Re

t Re
t Re

t Re
t

qt−1 0.31 0.31 1.29∗∗∗ 1.32∗∗∗ qt−3 0.25 0.22 0.98∗∗∗ 0.94∗∗∗

(1.20) (1.17) (4.24) (4.07) (1.34) (1.12) (3.03) (2.71)

αt−1qt−1 -1.23∗∗ -1.24∗∗ αt−3qt−3 -0.91∗∗ -0.89∗∗

(-2.58) (-2.53) (-2.26) (-2.13)

bwt−1qt−1 -0.56∗∗∗ -0.62 -0.13 0.19 bwt−3qt−3 -0.67∗∗∗ -1.39∗∗ -0.36 -0.78
(-3.05) (-0.87) (-0.46) (0.24) (-3.79) (-2.08) (-1.51) (-1.02)

bwt−1 0.07 -0.32 bwt−3 0.74 (0.42)
(0.09) (-0.46) (1.02) (0.57)

R2 0.022 0.022 0.044 0.045 0.027 0.028 0.040 0.040

Newey-West t statistics in parentheses; ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Notes: The table displays regressions of the log equity premium (Re
t ) in percent, against the conditional stock

market volatility (qt−h) and the product of market volatility and the product of the Baker and Wurgler (2006) market

sentiment index (bwt−h) and market volatility in regression specifications (1) and (5). Regression specifications (2)

and (6) include (bwt−h). Regression specifications (1) through (4) use a forecast horizon of h = 1 month. Regression

specifications (5) through (8) use a forecast horizon of h = 3 months. The sample period is 1990:01 - 2022:06 (June

2022 is the last month available for the Baker and Wurgler (2006) sentiment series). For ease of interpreting the

coefficients, qt, αtqt, and bwtqt and bwt are divided by their unconditional standard deviation.

We also tested whether the ambiguity measure from Brenner and Izhakian (2018) or the time

varying U.S. disaster probabilities from Barro and Liao (2021) subsume the relationship between

market ambiguity attitude and the risk-return tradeoff. It should be noted that the measure in

Brennan et al. (2004) is an index of ambiguity whereas αt in the present paper is a measure of

ambiguity attitude. In contrast to our approach, the ambiguity attitude in Brennan et al. (2004)

is not time-varying. We find that the coefficient on volatility remains positive and significant and

the coefficient on the interaction term αtqt remains negative and significant, but the ambiguity

measure from Brenner and Izhakian (2018) is not significant at both the monthly and quarterly

forecast horizons when added to the regressions. We similarly find that the coefficients on qt and
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αtqt remain significant while the coefficient on time-varying disaster probabilities is not significant

when added to the regression with qt and αtqt.

4.2. Out-of-Sample Regressions

Following the classic work of Welch and Goyal (2008), it is increasingly common to test if

evidence of return predictability from in-sample regressions also holds out-of-sample. Consequently,

we investigate the risk-return tradeoff and the predicted moderating effect of α in out-of-sample

regressions. We use three standard metrics to evaluate out-of-sample (OOS) predictability: (1)

the R2
OS statistic of Campbell and Thompson (2008); (2) the MSPE-adjusted statistic of Clark

and West (2007); and (3) the difference in cumulative sum of squared errors between the historical

average equity premium forecast and the forecast based on a set of predictor variables (Welch and

Goyal, 2008). The Campbell-Thompson out-of-sample R2 statistic is defined as follows:

R2
OS = 1−

∑T
t=1(rt − r̂t)

2∑T
t=1(rt − rt)2

. (18)

In (18), r̂t is the forecast (fitted value) from the predictive regression using information through

period t − h, while rt is the mean equity premium using historical values through period t − h.

A positive R2
OS statistic implies that the predictive regression has lower average mean-squared

prediction error than the historical mean equity premium. Campbell and Thompson (2008) show

that even an R2
OS of 1% can result in substantial utility gains for a mean-variance investor.

The second metric is the mean squared prediction error (MSPE)-adjusted statistic of Clark

and West (2007). This metric, henceforth CW, compares the predictive performance of two nested

models accounting for the higher noise introduced in the larger (nesting) model. The null hypothesis

is that the two models have equal mean-squared prediction errors. The alternative hypothesis is

that the larger model has a smaller MSPE. Rejecting the null hypothesis means the predictive

model outperforms the forecast based on the historical average.

Our third metric is the difference between cumulative sum of squared errors (CSSE) from the

historical mean equity premium and the CSSE generated a set of predictor variables (Welch and

Goyal, 2008). The out-of-sample difference in cumulative sum of squared errors (∆CSSEOOS) is:
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∆CSSEOOS =
s∑

t=1

(rt − rt)
2 −

s∑
t=1

(rt − r̂t)
2. (19)

We compute (19) over time for s = s0, ..., T−1, which enables us to display graphically the evolu-

tion and robustness of the equity premium prediction and its performance. A value ∆CSSEOOS > 0

implies a greater cumulative sum of squared error for the equity premium forecast generated by

the historical mean equity premium than for the equity premium forecast generated by a set of

predictor variables. Thus, a positive slope indicates that the predictor forecasts are outperforming

the benchmark. As an empirical benchmark, only one of the 15 equity premium forecasts plotted in

Jondeau et al. (2019) using common predictors in the literature consistently exceeds a ∆CSSEOOS

value of 1.5% and only three of those forecasts exceed a value of 1% for a sustained period of time.

Table 4 displays the R2
OS statistics for the out-of-sample predictive regressions based on the

following sets of predictor variables: (q), (q, αq), and (q, bw · q). From Table 4, we see that market

volatility does not have out-of-sample predictive power, with a negative R2
OS statistic. In contrast,

and supporting the predicted moderating effect from Proposition 1, the pair of predictors consisting

of market volatility and the product of market volatility and market ambiguity attitude produce a

positive R2
OS statistic above 4%.

Table 4. R2
OS for the Risk-Return Tradeoff

Monthly Horizon Quarterly Horizon

Predictors R2
OS CW R2

OS CW

qt -0.16 0.16 -0.28 0.13
qt, αtqt 4.06 2.77∗∗∗ 4.08 2.93∗∗∗

qt, bwtqt 0.64 1.09 1.53 1.54∗

Notes: The Table displays the Campbell and Thompson (2008) R2
OS statistic (in percent) for three sets of predictor

variables at the monthly forecast horizon (one month ahead) of the log equity premium. The sets of predictors are

market volatility (qt); market volatility and the product of volatility and ambiguity attitude (qt, αtqt); and market

volatility and the product of volatility and the sentiment index (qt, bwtqt). CW is the Clark and West (2007) MSPE-

adjusted statistic. ∗, ∗∗, and ∗∗∗ denotes significance at the 10%, 5%, and 1% levels, respectively. The out-of-sample

period spans the second half of our sample, from 2006:07 - 2022:12.

Figure 2 plots the evolution of the forecast performance of market volatility (left panel) and of
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Figure 2. Market Ambiguity Attitude and the Risk-Return Tradeoff Out-of-Sample
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Notes: This figure displays the difference in cumulative sum of squared errors, ∆CSSEOOS (in percent), between

the three-month-ahead forecast of the log equity premium based on the historical average and the three-month-ahead

forecast based on the conditional market volatility, q, from a GARCH(1,1) model (from Section 2.6) in the left panel.

The right panel displays the ∆CSSEOOS between the forecast based on the historical average and the forecast based

on the pair of predictors consisting of the conditional market volatility, q, and the product of q and the conditional

market ambiguity attitude, α. The out-of-sample period is 2006:07 - 2022:12. Shaded periods are NBER recessions.

market volatility and the product of ambiguity attitude and volatility (right panel) over the second

half of the sample period (July, 2006, through December, 2022) which constitutes our out-of-sample

period. The difference between the two panels is striking. Market volatility has greater cumulative

sum of squared forecast errors than the historical average equity premium forecast throughout the

sample period. In contrast, the forecast in the right panel has a consistent upward trend, indicating

our model forecasts are outperforming the benchmark. Similar results hold for the one-month-ahead

(monthly) forecast horizon as shown in the Internet Appendix in Figure 3.

5. Sources of Ambiguity Attitude Predictability

A natural question given the preceding results is what is the source of the ability of market

ambiguity attitude to predict future returns? In this section we briefly explore two channels through

which αt might predict future returns - through predicting large market declines (such as market

crashes) and through predicting recessions which could reflect time variation in macroeconomic risk

related to the real economy.
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5.1. Ambiguity Attitude and Market Crashes

Under the model in Section 2, a high αt reflects an over-valued market relative to the benchmark

of an expected utility representative agent. In the Markov-switching model, a high αt also coincides

with a regime in which
EPt

qtγt
is low, which corresponds on average to low expected market excess

returns and high conditional market volatility. Given the persistent dynamics of αt, it should then

predict future large market declines which are natural consequences of a regime with low expected

returns and high volatility.

Table 5 provides evidence that a high level of αt systematically precedes large market declines.

The table shows the frequency of large market declines (one-month market returns below -10% (top

row) and below -5% (bottom row) in three sample cases. For the full sample, there were six market

crashes of at least 10%, that occurred in roughly 1.5% of the periods, and 39 market crashes of at

least 5% that occurred in approximately 10% of the periods. The second case shown in Table 5

is the frequency of crashes that occurred in periods in which αt was in the top 33% of αt values

within the preceding three months (across the full sample of αt values). The table shows that a

high level of market ambiguity attitude in the three months prior to a given period t increases the

frequency of 10% crashes in period t to above 4%, more than double the unconditional average.

The frequency of 5% crashes also roughly doubles to nearly 20%. In contrast, none of the 10%

market declines and less than five percent of the 5% market declines occurred in periods in which

αt was not in the top 33% of αt values in the preceding three months.

The second and third column in Table 5, described in the previous paragraph, display the

frequency of market crashes in period t, given a high or low level of αt in the preceding three

months. In contrast, the fourth column in Table 5 presents the frequency of a high level of αt in

the preceding three months, given a crash occurred in period t. From the table, we see that all six

market crashes of at least 10% occurred in periods in which αt was in the top 33% of αt values in

the previous three months. The bottom row shows that roughly 72% of all 5% crashes occurred in

periods in which αt was in the top 33% of all αt values in the previous three months. Our approach

complements Gormsen and Jensen (2022), who find that large market declines are preceded by

periods of low market volatility, by demonstrating that they are also preceded by periods of high

market ambiguity attitude.
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Table 5. Frequency of Market Crashes

Frequency of Market Crashes Crashes Predicted

Unconditional α (Top 33%) α (Bottom 67%) α (Top 33%)

10% Market Declines 1.55% (6) 4.14% (6) 0.00% (0) 100.00% (6)
5% Market Declines 9.95% (39) 19.31% (28) 4.45% (11) 71.79% (28)

Notes: The table displays the frequency of large market declines in percent (with the total number in parentheses)

across the (i) full sample period (Unconditional); (ii) across periods in which α surpassed the top 33% of (full-sample)

α values within the preceding three months; (iii) across periods in which α did not surpass the top 33% of α values

within the preceding three months. The fourth column displays the proportion of realized crashes that occurred in

a period in which α surpassed the top 33% of α values within the preceding three months. The first row displays

the results for one-month declines in the market exceeding 10%. The second row displays the results for one-month

market declines exceeding 5%. The data covers the full sample period from 1990:01 - 2022:12.

Table 6 uses logistic regressions to test whether market ambiguity attitudes predicts 5% or 10%

market crashes. We run logistic regressions in which the left-hand-side variable is an indicator

of either a 10% market crash or a 5% market crash. In our baseline specification summarized in

column (1) (for a 10% crash) and column (6) (for a 5% crash) we include only α on the right-hand-

side (lagged three months). In the remaining columns, we include three control variables (each

lagged three months) which are the variables that were used in the construction of α and which

are each plausible predictors of a market crash: the conditional market volatility, q, the VIX index,

and the market price-dividend ratio.

In Panel A of Table 6, we see that α is a significant predictor of both 10% and 5% market

declines at the quarterly forecast horizon and that it subsumes any predictability present in q,

VIX, or pd for market crashes. Panel A uses the full sample period (1990 - 2022). Panel B shows

that similar results obtain when the logistic regression uses only data from the out-of-sample period

(July, 2006 - December, 2022).

5.2. Ambiguity Attitude and NBER Recessions

The predictive ability of α might also reflect time-varying macroeconomic risk that is linked to

the real economy. Indeed, Rapach et al. (2010) argue that a promising explanation for successful

forecasts of the equity premium is that they reflect time-variation in macroeconomic risk linked

to the real economy. In the case of the market ambiguity attitude, if α follows a mean-reverting
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Table 6. Predicting Market Crashes with Market Ambiguity Attitude

Logistic Regressions for Predicting Market Crashes (Full Sample Period)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Panel A -10% -10% -10% -10% -10% -5% -5% -5% -5% -5%

αt−3 1.65∗∗∗ 1.58∗∗∗ 1.58∗∗∗ 2.38∗∗∗ 2.66∗∗∗ 0.77∗∗∗ 0.81∗∗∗ 0.81∗∗∗ 0.83∗∗∗ 0.93∗∗∗

(4.06) (3.47) (3.15) (3.60) (5.23) (4.19) (3.89) (3.60) (3.14) (2.89)

qt−3 0.31 0.29 -0.08 -0.06
(0.46) (1.06) (-0.38) (-0.29)

VIXt−3 0.17 -0.32 -0.07 -0.07
(0.27) (-0.79) (-0.26) (-0.27)

pdt−3 -0.69 -0.81 -0.08 -0.12
(-1.15) (-1.57) (-0.35) (-0.51)

Pseudo R2 0.164 0.171 0.167 0.199 0.206 0.079 0.080 0.080 0.080 0.081

Logistic Regressions for Predicting Market Crashes (Out-of-Sample Period)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Panel B -10% -10% -10% -10% -10% -5% -5% -5% -5% -5%

αt−3 1.90∗∗∗ 2.11∗∗ 1.68∗∗∗ 1.85∗∗∗ 2.17∗∗∗ 0.76∗∗∗ 0.81∗∗∗ 0.80∗∗∗ 0.77∗∗∗ 0.86∗∗∗

(3.49) (2.39) (5.25) (4.01) (3.94) (2.94) (3.14) (2.98) (2.86) (3.00)

qt−3 0.54 0.12 -0.14 -0.17
(1.20) (0.31) (-0.73) (-0.83)

VIXt−3 0.35 -0.39 -0.08 -0.03
(0.82) (-0.78) (-0.31) (-0.12)

pdt−3 -1.60∗ -2.21 -0.04 -0.17
(-1.84) (-1.37) (-0.14) (-0.45)

Pseudo R2 0.159 0.214 0.188 0.271 0.284 0.072 0.076 0.073 0.072 0.077

Robust Z statistics in parentheses; ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Notes: The table displays the slope coefficients from logistic regressions. The left-hand-side variable equals one in

period t if a market return less than -10% occurred in period t, and zero otherwise. In columns (6) - (10), the left-

hand-side variable equals one in period t if a market return less than -5% occurred in period t, and zero otherwise.

The right-hand-side variables (each lagged three months) are the market ambiguity attitude. α, the conditional

market volatility, q, the VIX index of the Chicago Board of Options Exchange, and the price-dividend ratio, pd, of

the S&P 500 index. Panel A displays the results for the full sample period (1990:01 - 2022:12). Panel B displays the

results for the second half of the sample (the out-of-sample period, spanning 2006:07 - 2022:12). For convenience in

interpreting the coefficients, each right-hand-side variables is divided by its full-sample standard deviation.
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stochastic process, high α today predicts a lower α in the future. If the economy slows down

as α declines (i.e., if a decline in optimism reduces consumption expenditures by consumers and

investment by firms), then high α could positively forecast recessions. To explore this possibility,

we consider whether α systematically predicts NBER recessions.

Table 7 reveals that roughly 9% of periods in our sample are classified as recession periods. In

contrast, nearly 18% of periods in which αt entered the top 33% of α values in the three months

before period t are recession periods, roughly double the unconditional average. Only 4% of periods

in which αt did not surpass the top 33% of α values in the preceding three months are recession

periods, less than half the unconditional average. The table also shows that 72% of NBER recession

periods occurred within three months after α reached the top 33% of α values.

Table 7. Frequency of NBER Recession Periods

Frequency of NBER Recession Periods Recessions Predicted

Unconditional α (Top 33%) α (Bottom 67%) α (Top 33%)

NBER Recessions 9.18% (36) 17.93% (26) 4.05% (10) 72.22% (26)

Notes: The table displays the frequency of NBER recession periods in percent (with the total number in parentheses)

across the (i) full sample period (Unconditional); (ii) across periods in which α surpassed the top 33% of (full-sample)

α values within the preceding three months; (iii) across periods in which α did not surpass the top 33% of α values

within the preceding three months. The fourth column displays the proportion of recession periods that occurred in

a period in which α surpassed the top 33% of α values within the preceding three months. The data covers the full

sample period from 1990:01 - 2022:12.

Table 8 summarizes logistic regressions for the full sample period (in Panel A) and the out-of-

simple period (in Panel B), with α as a predictor variable for NBER recessions at the three-month

horizon.12 Liu and Moench (2016) investigate which variables best predict recessions and identify

the term spread and the aggregate stock market return as the two strongest recession predictors at

short horizons including the three-month forecast horizon. Guha and Hiris (2002) find that credit

spreads are also useful predictors of recessions. We consider three related variables as candidate

NBER recession predictors: (i) the term spread, TMS, defined as the difference between the long-

term yield on U.S. government bonds and the U.S. treasury bill; (ii) the aggregate stock market

return, Rm, from Kenneth French’s data library; and (iii) the default yield spread (DFY), defined

as the difference between BAA and AAA-rated corporate bond yields. Each of these variables has

12Similar results are obtained using probit regressions.
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significant predictive power for NBER recessions over our sample period. As additional control

variables we include the price dividend ratio of the S&P 500 index (PD), the VIX index from the

CBOE, and q from the GARCH(1,1) model in Section 2.6 (which are the variables used in the

construction of α). Finally, we include as controls the Baker and Wurgler (2006) market sentiment

index and the lagged NBER recession indicator.

Table 8 shows that α significantly predicts NBER recessions across each set of control variables,

for both the full-sample period and the out-of-sample period. Across the full sample period, the gain

in Pseudo R2 relative to not including α ranges from 4% to 13.4%. For regression specification (6)

in Panel A with all eight control variables included, adding α to the regression increases the Pseudo

R2 by 11.2%. The effect is stronger for the out-of-sample period. For regression specification (6) in

Panel B, adding α to the eight control variables which already include strong recession predictors,

the Pseudo R2 increases by nearly 15%. The results in this section provide initial evidence that

market ambiguity attitude is an important determinant of stock market fluctuations and business

cycle fluctuations.

6. Out-of-Sample Investment Performance

We next consider the investment performance of a dynamically optimized portfolio that uses

the equity premium forecasts generated by qt and αtqt. As discussed by Campbell and Thompson

(2008), Jondeau et al. (2019), and Giglio et al. (2021), the Markowitz optimal weight on the market

portfolio is given by:

wt =
1

λ

[
Et[Rt+1]−Rf,t

vart[Rt+1]

]
. (20)

In equation (20), Et[Rt+1]−Rf,t is the time t expected market return in excess of the risk-free

rate, vart[Rt+1] is the conditional variance of the market return, λ is the investor’s coefficient of

relative risk aversion. Giglio et al. (2021) note that experimental estimates of this coefficient are

between 3 and 10 and they consider 4 to be a realistic value of λ. Following Jondeau et al. (2019)

we add the realistic portfolio constraint that wt ∈ [0, 2] which excludes short-selling and permits at

32



Table 8. Predicting Recessions with Market Ambiguity Attitude

Logistic Regressions for Predicting Recessions (Full Sample Period)

(1) (2) (3) (4) (5) (6)
Panel A REC REC REC REC REC REC

αt−3 0.85∗∗∗ 0.79∗∗∗ 0.77∗∗∗ 1.95∗∗∗ 0.79∗∗∗ 3.26∗∗∗

(4.68) (3.18) (3.00) (6.06) (4.46) (4.00)

Lagged Recession Predictors NO YES NO NO NO YES

Lagged Recession Indicator NO NO YES NO NO YES

Lagged α Ingredients NO NO NO YES NO YES

Lagged Sentiment Index NO NO NO NO YES YES

Pseudo R2 0.093 0.278 0.448 0.288 0.099 0.682
∆(Pseudo R2) 0.093 0.052 0.040 0.134 0.066 0.112

Logistic Regressions for Predicting Recessions (Out-of-Sample Period)

(1) (2) (3) (4) (5) (6)
Panel B REC REC REC REC REC REC

αt−3 2.27∗∗∗ 3.57∗∗∗ 2.10∗∗∗ 3.00∗∗∗ 2.77∗∗∗ 3.25∗∗∗

(3.02) (3.55) (3.14) (4.44) (3.94) (3.26)

Lagged Recession Predictors NO YES NO NO NO YES

Lagged Recession Indicator NO NO YES NO NO YES

Lagged α Ingredients NO NO NO YES NO YES

Lagged Sentiment Index NO NO NO NO YES YES

Pseudo R2 0.290 0.593 0.617 0.612 0.379 0.747
∆(Pseudo R2) 0.290 0.275 0.142 0.311 0.375 0.147

Robust z statistics in parentheses; ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: The table displays the slope coefficients from logistic regressions. The left-hand-side variable is the NBER

recession indicator (REC) from the St. Louis Federal Reserve database. REC is equal to one in period t if there

was a recession in period t and is equal to zero otherwise. The right-hand-side variables (each lagged three months)

include the market ambiguity attitude (α) and eight control variables: (i) the term spread (TMS) (the difference

between the long-term U.S. government bond yield and the U.S. treasury bill) from Welch and Goyal (2008) (ii) the

default yield spread (DFY) (the difference between BAA and AAA-rated corporate bond yields) from Welch and

Goyal (2008) (iii) the aggregate market return (Rm) from Kenneth French’s data library (The variables TMS, DFY,

and Rm are our ‘recession predictor’ variables as these are known to have forecasting power for NBER recessions);

(iv) the lagged NBER recession indicator; (v) the price-dividend ratio of the S&P 500 index from Robert Shiller’s

website (PD); (vi) the VIX index of the Chicago Board of Options Exchange; (vii) the conditional market volatility,

q, from the GARCH model in Section 2.6 (The variables PD, VIX, and q are the ‘α ingredients’ as these variables

were used in the construction of α); and (viii) the Baker and Wurgler (2006) market sentiment index. Panel A uses

the full sample of available data from 1990:01 - 2022:12, except in regression specification (2) which ends in 2021:12,

specification (5) which ends in 2022:06, and specification (6) which ends in 2021:12 due to data availability. Panel B

displays the results for the out-of-sample period from 2006:07 through 2022:12, except in regression specifications (2),

(5), and (6) due to the same data availability restriction as in Panel A. ∆(Pseudo R2) denotes the change in Pseudo

R2 from including α in the regression relative to an otherwise identical regression that excludes α. For convenience

in interpreting the coefficients, α is divided by its full-sample standard deviation.
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most 100% leverage. The ex post portfolio excess return, Re
p,t+1, at the end of month t+1 is then:

Re
p,t+1 = wt R

e
m,t+1, (21)

where Re
m,t+1 denotes the market excess return in period t+1. As noted by Jondeau et al. (2019),

repeating this process for each period from the first out-of-sample period through the end of the

sample period, yields a time series of ex post excess returns for each optimal portfolio. We will

evaluate the performance of each portfolio according to the portfolio’s realized Sharpe ratio during

the out-of-sample period: SRp =
rp
σp

where rp is the sample mean and σ2
p is the sample variance of

the portfolio return. A second metric we compute is the certainty equivalent return on portfolio p,

defined as: CER = rp − (λ/2)σ2
p. This quantity is the risk-free return that would make a mean-

variance investor with risk aversion λ indifferent between that return and investing in portfolio p.

We also test if the investment strategies earn significant risk-adjusted returns relative to the Fama

and French (2018) six factor model and the Hou et al. (2021) five-factor q-factor model.

We consider three equity premium forecasts, each at the one month forecast horizon. The

sets of predictors used to generate the forecasts are: (i) q and αtqt; (ii) qt; and (iii) the historical

average forecast. As a benchmark, we also consider a fourth investment strategy, the buy-and-

hold strategy of passively holding the market portfolio. To compute the conditional variance in

the optimal portfolio weight, we use q2t , the conditional market variance from the GARCH(1,1)

model in Section 2.6. Table 9 summarizes the investment performance with strategies ranked by

their realized Sharpe ratio. For each strategy, the table displays the average weight on the market

portfolio (w̄), the average monthly return (Ret), the average monthly volatility (Vol) of the portfolio

return, the annualized monthly Sharpe ratio (SR), the annualized certainty equivalent return on the

strategy in percent, and the annualized risk-adjusted returns relative to the Fama-French six factor

model (α̂FF6), and the Hou et al. (2021) five-factor q-factor model (α̂q5). The abnormal returns

relative to the factor models are estimated as the intercept in simple time series regressions.13

The investment strategy based on qt and αtqt is the only one of the strategies to earn significant

13The Fama and French (2018) six factor model extends the CAPM (consisting of the market excess return as the
only factor) to include five additional factors. These factors are long-short portfolios sorted on firm size, firm book-
to-market ratio, firm profitability, firm investment, and firm past returns. The Hou et al. (2021) five-factor q model
consists of a market factor, and factors formed from the following firm characteristics: firm size, investment-to-assets,
return-on-equity, and expected growth.
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abnormal returns relative to the Fama-French six factor model and the q-factor model. Neither the

investment strategy based on market volatility, qt, alone, or the strategy based on the historical

average outperforms the passive buy-and-hold strategy in terms of the portfolio Sharpe ratio or

certainty equivalent return. In contrast, the strategy that combines αt with qt generates a Sharpe

ratio that is 43% higher than that of the passive buy-and-hold strategy and a CER that is more

than double that of the buy-and-hold strategy.

Table 9. Out-of-Sample Investment Performance

Predictors w̄ Ret Vol SR CER αFF6 αq5

q, αq 1.08 1.15 4.98 0.80 8.14 6.55∗∗ 6.55∗

Buy-and-hold 1.00 0.76 4.69 0.56 3.91 0.00 0.00
q 0.90 0.49 3.86 0.44 2.33 -1.07 -0.24
Historical avg. 0.93 0.48 3.95 0.42 2.03 -0.72 -0.36

Notes: The table displays the out-of-sample investment performance of investment strategies that dynamically

optimize the weights on the market portfolio based on forecasts of the equity premium at the one month forecast

horizon. The weight on the market portfolio in each period is the one-month-ahead equity premium forecast divided

by the product of the coefficient of relative risk aversion (λ) and the conditional market variance (based on the

GARCH(1,1) model from Section 2.6 estimated one-month ahead). For all strategies λ is set equal to 4 as suggested

by Giglio et al. (2021). The investment strategies correspond to forecasts based on (i) market volatility, q, and

the product of market optimism and market volatility, αq; (ii) q; (iii) the historical average forecast; and (iv) the

passive strategy that buys and holds the market portfolio. For each strategy, the table displays the average weight

on the market portfolio (w̄), the average monthly return (Ret), the average monthly volatility (Vol) of the portfolio

return, the annualized monthly Sharpe ratio (SR), the annualized certainty equivalent return, and the annualized

risk-adjusted returns relative to the Fama and French (2018) six factor model (αFF6), and the Hou et al. (2021)

five-factor q-factor model (αq5). Returns are in percent. The data spans the out-of-sample period from 2006:07,

through 2022:12.

7. Robustness Checks

We perform various robustness checks to evaluate the robustness of our results. In particular,

(i) We test if the regression coefficients are stable across the two halves of the sample period; (ii)

We test whether α moderates the risk-return tradeoff in both halves of our sample period; and (iii)

we test if the results hold using alternative GARCH volatility models.
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7.1. Stability of Regression Coefficients

Motivated by Welch and Goyal (2008) and Goyal et al. (2021), We investigate if the regression

coefficients are stable across the two halves of our sample (January, 1990 - June, 2006, and July,

2006 - December, 2022). Table 10 displays the in-sample regression coefficients from regressions of

the form in (22) and (23). The first regression in Table 10 uses (22) where yt+h ≡ Re
t,t+h, xt ≡ qt

and D is a dummy variable that equals 0 in the first half of the sample period and 1 in the second

half of the sample. In the table, β1 ≡ β and β2 ≡ β + βDx. The second regression in Table 10 uses

(23) and adds zt ≡ αtqt. The third regression in the table is similar to the second except that now

xt ≡ αtqt and zt ≡ qt.

yt+h = a+ β xt + βD D + βDxDxt + ϵt+h (22)

yt+h = a+ β xt + βD D + βDxDxt + βzzt + ϵt+h (23)

Similar to Goyal et al. (2021), sign changes between the estimated coefficients for the two halves

of the sample period, β1 and β2, are marked with ∆. Statistically significant differences between

β1 and β2 at the 10% significance level are marked with an asterisk if present.

Two observations emerge from Table 10. First, the regression with only qt is unstable, as it

changes sign from negative to positive across the two halves of the sample period. Second, the

estimated coefficients for qt are noticeably more stable when the interaction term αtqt is included

in the regression. Further, the coefficients for αtqt are similar and not significantly different across

the two halves of the sample period. For example, at the quarterly forecast horizon, the coefficient

estimates on market volatility are -0.18 and 0.53 in the two halves of the sample period when

only q is included in the regression. Including the interaction term αq in the regression yields

estimated coefficients for q of 1.31 and 1.34 in the two halves of the sample period and they are

not significantly different. The coefficients for αq are -1.28 and -1.31 across the two halves of the

sample period and are also not significantly different.
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Table 10. Stability of Coefficients for the Risk-Return Tradeoff

Monthly Quarterly

xt zt β1 β2 ∆ β1 β2 ∆

qt -0.03 0.43 ∆ -0.18 0.53 ∆
qt αtqt 1.78 1.43 1.31 1.34
αtqt qt -1.35 -1.69 -1.28 -1.31

Notes: The table displays coefficients from full-sample predictability regressions for the first and second half of the

sample period for the monthly and quarterly forecast horizons. The first sub-sample spans monthly data from 1990:01 -

2006:06. The second sub-sample spans from 2006:07 - 2022:12. β1 and β2 denote the estimated coefficients for the first

and second halves of the sample. They are estimated from the regression yt+h = a+β xt+βD D+βDx Dxt+βzzt+ϵt+h

where D is a dummy variable that equals 0 in the first half of the sample period and 1 in the second half of the

sample, β1 ≡ β and β2 ≡ β+βDx. The predictor variables include market ambiguity attitude, αt, conditional market

volatility, qt, measured from a GARCH(1,1) model, and the product αtqt. ∆ denotes a sign change across the two

halves of the sample (β1 and β2 are of opposite sign). For ease of interpreting the coefficients, q and αq are divided

by their (full sample) standard deviation.

7.2. Performance Across Subsamples

We test whether market ambiguity attitude moderates the risk-return tradeoff in each half of

our sample period in Table 11. The regression results presented in columns (6) and (9) in both

Panels A and B of Table 11 reveal that α significantly moderates the risk-return tradeoff for both

halves of the sample period (the training period from 1990:01 - 2006:06 and the out-of-sample

period from 2006:07 - 2022:12) at both the monthly and quarterly forecast horizons. In each case,

the significantly positive risk-return relation is recovered when αq is included in the regression with

q. Further, note that including both qt and αtqt at least doubles the R2, relative to just including

qt for each of regressions (3), (6), and (9) at both the monthly and quarterly forecast horizons.

7.3. Alternative GARCH Volatility Models

We test if the risk-return tradeoff results also hold if q is constructed as a standard simple

GARCH(1,1) model (without including the price-dividend ratio) or as a GJR GARCH model. As

with our main specification (the GARCH(1,1) model from Section 2.6), both the simple GARCH(1,1)

model and the GJR GARCH model are recursively estimated and are free of look-ahead bias.

Table 15 in the Online Appendix shows the risk-return tradeoff results for the case where q is a

standard simple GARCH(1,1) model (similar to that in Section 2.6 but constructed with a constant
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Table 11. Market Ambiguity Attitude and the Risk-Return Tradeoff Across Subsamples

Monthly Full Sample (1990 - 2022) Out-of-Sample Period Training Sample Period

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Panel A Re

t Re
t Re

t Re
t Re

t Re
t Re

t Re
t Re

t

qt−1 0.30 1.35∗∗∗ 0.43 1.51∗∗∗ -0.02 1.56∗∗

(1.18) (5.44) (1.38) (5.45) (-0.04) (2.29)

αt−1qt−1 -0.32 -1.36∗∗∗ -0.28 -1.69∗∗ -0.35 -1.37∗∗

(-1.07) (-3.87) (-0.55) (-2.59) (-1.02) (-2.35)

R2 0.005 0.005 0.042 0.011 0.003 0.061 0.000 0.007 0.027

Quarterly Full Sample (1990 - 2022) Out-of-Sample Period Training Sample Period

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Panel B Re

t Re
t Re

t Re
t Re

t Re
t Re

t Re
t Re

t

qt−3 0.33 1.25∗∗∗ 0.54∗∗ 1.39∗∗∗ -0.19 1.19∗∗

(1.51) (4.87) (2.48) (4.34) (-0.45) (2.11)

αt−3qt−3 -0.24 -1.20∗∗∗ -0.05 -1.34∗∗ -0.42 -1.19∗∗

(-0.96) (-3.48) (-0.12) (-2.44) (-1.27) (-2.23)

R2 0.005 0.003 0.034 0.018 0.000 0.049 0.001 0.010 0.021

Newey-West t statistics in parentheses; ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Notes: The table displays regressions of the log equity premium, Re
t , in percent, against the conditional stock market

volatility (qt−h), estimated from a GARCH(1,1) model (from Section 2.6), in regression specifications (1), (4), and (7);
regressions of the log equity premium against the product of market ambiguity attitude and the conditional market
volatility (αt−hqt−h) in regression specifications (2), (5), and (8); and regressions of the log equity premium against
both variables in regression specifications (3), (6), and (9). Formally, we run versions of the following regression that
include one or both of the right-hand-side variables:

Re
t = β0 + β1qt−h + β2αt−hqt−h + ϵt, (24)

Regressions (1), (2), and (3) span monthly data from the full sample period (1990:01 - 2022:12). Regressions (4),

(5), and (6) use data from the second half of this sample (2006:07 - 2022:12) which is the period for which qt and αt

are recursively estimated using only information available to investors in real time. Regressions (7), (8), and (9) use

data from the first half of the sample period (1990:01 - 2006:06) which served as the training period in which qt and

αt were estimated using all data in the first half of the sample. Regressions in Panel A are over a forecast horizon

of h = 1 month (monthly horizon). Regressions in Panel B are over a forecast horizon of h = 3 months (quarterly

horizon). For ease of interpreting the coefficients, q and αq are divided by their (full sample) standard deviation.
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mean instead of a time-varying mean based on the price-dividend ratio). The table shows the results

for both monthly and quarterly forecast horizons and for the full sample and each subsample.

The results for the standard simple GARCH model are similar to our baseline results: By itself,

q does not predict the equity premium, but including both q and αq yields a positive and significant

coefficient on q and a negative and significant coefficient on αq at both the monthly and quarterly

forecast horizon. At the monthly horizon, the R2 jumps from 0.4% with only q to 4.2% with both

q and αq. At the quarterly horizon, the R2 jumps from 0.4% with only q to 3.3% with both q and

αq. These results for the full sample are stronger for the out-of-sample period. For the training

period, the coefficients for both the monthly and quarterly horizon forecasts are also significant at

the 10% level.

Table 17 in the Online Appendix reveals that the coefficient estimates under the simple GARCH

model are similar across the two halves of the sample period when both q and αq are included in

the regression. For example, for q, the estimated coefficient is 1.18 for the first half and 1.31 for

the second half at the quarterlyy horizon. For αq, the estimated coefficient is -1.28 for the first half

and also -1.28 for the second half of the sample at the quarterly horizon.

Figure 4 displays the predictive performance over time (the ∆CSSE plots) for out-of-sample

regressions with q (left panel) and both q and αq (right panel) for the one-month forecast horizon

(top panel) and the one-quarter forecast horizon (bottom panel) where q is the standard GARCH

volatility. The figure shows that while by itself, q under-performs the benchmark, the forecast with

both q and αq consistently outperforms the benchmark with a ∆CSSE above 1% that increases

across the out-of-sample period and is close to 2% by the end of the sample period.

In addition to the simple GARCH(1,1) model, we apply a GJR GARCH model. Tables 16 and

18 in the Online Appendix summarize the results and indicate the GJR specification yields similar

results to the simple GARCH model. The out-of-sample results for the GJR GARCH model are

shown in the bottom panel of Table 19 in the Online Appendix. Figure 5 shows the out-of-sample

performance of the GJR GARCH model over time which is similar to that of the simple GARCH

model shown in Figure 4.
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8. Conclusion

This paper studies the effect of market ambiguity attitude on the risk-return tradeoff. We

consider a representative agent asset pricing model in which equilibrium prices depend on an in-

formation component (reflecting the asset’s discounted expected value) and a noise component

(reflecting the market’s ambiguity attitude). Market efficiency (in which prices fully reflect avail-

able information) deteriorates in periods of high uncertainty (at which time prices partially reflect

information and partially reflect the market’s ambiguity attitude). The equilibrium equity premium

depends on market optimism, Knightian uncertainty, positive skewness, and disaster risk, linking

these strands of the asset pricing literature. We derive the theoretical implication that the equity

premium is increasing in market volatility and the slope of this relationship flattens as market

ambiguity attitude increases. We develop a theory-based measure of the market’s ambiguity atti-

tude and tested the theoretical predictions that it explains time variation in the market risk-return

tradeoff and that it predicts market crashes.

We find that the predicted positive relationship between the equity premium and the conditional

market volatility is observed only after accounting for the market ambiguity attitude. This finding

holds both in-sample and out-of-sample, at both the monthly and quarterly forecast horizons, and it

is not explained by market sentiment or established equity premium predictors. We also document

that market ambiguity attitude predicts market crashes, consistent with high levels of optimism

reflecting an over-valued market relative to an expected utility representative agent. Further,

market ambiguity attitude predicts NBER recessions, thereby providing a new link between the

aggregate stock market and the real economy. Our results indicate that market ambiguity attitude

is an important state variable in driving time-varying expected returns, and might help to bridge

the gap between irrational exuberance in the stock market and equilibrium asset pricing theory.

Appendix

Proof of Proposition 2: Let us rewrite the definition of VRP in (11), and use the fact that under

the risk-neutral measure, the expected market return equals the risk-free rate. Thus,

V RPt = (1− γt)Et(Rt+1 −Rf,t)
2 + γt

[
αt(Rt+1 −Rf,t)

2 + (1− αt)(Rt+1 −Rf,t)
2
]
− q2t .
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Using Et(Rt+1 −Rf,t)
2 = q2t , and applying Assumption 1 with ξ = ξ = ξ gives us:

V RPt = (1− γt)q
2
t + γt

[
αt(EPt + ξqt)

2 + (1− αt)(EPt − ξqt)
2
]
− q2t ,

where EPt is the equity premium. Next, replacing EPt from Equation (10), gives us:

V RPt = (1− γt)q
2
t + γt

[
αt

(
ξqtγt(1− 2αt) + ξqt

)2
+ (1− αt)

(
ξqtγt(1− 2αt)− ξqt

)2]− q2t .

After simplification, rearranging the terms, and factoring ξ2q2t , we have

V RPt =
[
1 + (γ2t − 2γt)(1− 2αt)

2
]
ξ2q2t γt − γtq

2
t .

On average, the term (γ2t − 2γt)(1− 2αt)
2 is about two orders of magnitude smaller than 1 (this is

because both γt and (1 − 2αt) are on average small values), and hence, we can drop that term in

the bracket and approximate the bracket with one, which yields the result in Equation (12).14

Proof of Proposition 3: First, notice that we can approximate the risk-neutral probability

density for the NEO-EU agent with three points: the mean of the distribution (for the EU part)

and the two extreme points for the best and worst case returns. Without loss of generality, we can

shift the three-point distribution such that the risk-neutral weights are placed on the three points

−ξ, 0, and ξ. Since the probabilities of the points (−ξ, 0, ξ) are
(
γ(1− α), 1− γ, γα

)
, the skewness

of this distribution is

(2α− 1)γ
(
(1− γ)(2(1− γ)− 1)− 8α(1− α)γ2

)
(γ(4α(1− α)γ + 1− γ))

3
2

.

The derivative of this expression with respect to α is

2 (1− γ − 8α(1− α)γ)(
γ (4α(1− α)γ + 1− γ)5

) 1
2

.

14For our baseline specification of ξ = 4.77, plugging the unconditional values of γ = 0.05 and α = 0.27 from
Table 1 yields an expression for the term in the bracket of 0.98. Plugging in the estimated values of γt and αt to
construct a time series of the term in the bracket yields an unconditional value for the bracketed term of 0.97. These
observations confirm that the term in the bracket can reasonably be approximated by one.
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Thus, ∂ skewness
∂α > 0 if

γ <
1

1 + 8α(1− α)
. (25)

For the sake of numerical comparison, the right hand side is smallest at α = 0.5, for which the

upper bound on γ is 1
3 . As α approaches 0 or 1, the upper bound on γ approaches one.

LEMMA 1: If the payoff Xt+1 in the model is replaced with the dividend Dt+1, then replacing

Assumption 1 with Dt+1 = (1+ξqt)Dt, Dt+1 = (1−ξqt)Dt, and Et[Dt+1] = Dt, gives approximately

the same equation for the equity premium in (10). Moreover, the expected log return is approximately

linear in the price-dividend ratio.

Proof. Given the best and worst case scenarios for future dividend, i.e., Dt+1 = (1 + ξqt)Dt and

Dt+1 = (1− ξqt)Dt, the price Equation (5) becomes

Pt = (1− γt)δEt[Dt+1] + γtδ
(
αtDt+1 + (1− αt)Dt+1

)
Pt = (1− γt)δDt + γtδ

(
αt(1 + ξqt)Dt + (1− αt)(1− ξqt)Dt

)
,

and hence, we have the price-dividend ratio

pdt = δ
(
1− ξγtqt(1− 2αt)

)
.

Thus, log(pdt) = log(δ) + log
(
1− ξγtqt(1− 2αt)

)
, and using the approximation log(1 + x) ≈ x, we

find that as is the case with pdt, the log price-dividend ratio log(pdt) is (approximately) linear in

ξγtqt(1− 2αt). Note that the approximation is accurate if γtqt is small, and in our monthly data,

both γt (on average 0.05) and qt (on average 0.04) are small.

As for the expected return, we have EtRt+1 =
Et[Dt+1]

Pt
= 1

pdt
, so the log expected return is linear

in log(pdt), which is linear ξγtqt(1− 2αt). Thus, we showed that approximately, both pdt and the

log expected return are linear in ξγtqt(1− 2αt), and hence, the log expected return is also linear in

pdt. Finally, note that the log expected return and expected log return are off by a Jensen’s term.

Thus, as long as this Jensen’s term is negligible, the expected log return is approximately linear in

the price-dividend ratio. The last condition on the negligibility of the Jensen’s term can be checked

in the data, and we find that in our monthly data, log expected returns and expected log returns

have an almost perfect correlation.
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Baillon, Aurélien, Han Bleichrodt, Umut Keskin, Olivier l’Haridon, and Chen Li, 2018, The effect

of learning on ambiguity attitudes, Management Science 64, 2181–2198.

Baker, Malcolm, and Jeffrey Wurgler, 2006, Investor sentiment and the cross-section of stock re-

turns, The Journal of Finance 61, 1645–1680.

Baker, Scott R, Nicholas Bloom, and Steven J Davis, 2016, Measuring economic policy uncertainty,

The Quarterly Journal of Economics 131, 1593–1636.

Bali, Turan G, and Hao Zhou, 2016, Risk, uncertainty, and expected returns, Journal of Financial

and Quantitative Analysis 51, 707–735.

Barro, Robert J, and Gordon Y Liao, 2021, Rare disaster probability and options pricing, Journal

of Financial Economics 139, 750–769.

Barroso, Pedro, and Paulo F Maio, 2023, The risk-return tradeoff among equity factors, Available

at SSRN 2909085.

Bekaert, Geert, and Marie Hoerova, 2014, The vix, the variance premium and stock market volatil-

ity, Journal of Econometrics 183, 181–192.

43



Bollerslev, Tim, 1986, Generalized autoregressive conditional heteroskedasticity, Journal of econo-

metrics 31, 307–327.

Bossaerts, Peter, Paolo Ghirardato, Serena Guarnaschelli, and William R Zame, 2010, Ambiguity

in asset markets: Theory and experiment, The Review of Financial Studies 23, 1325–1359.

Brandt, Michael W, and Qiang Kang, 2004, On the relationship between the conditional mean and

volatility of stock returns: A latent var approach, Journal of Financial Economics 72, 217–257.

Brandt, Michael W, and Leping Wang, 2007, Measuring the time-varying risk-return relation from

the cross-section of equity returns. Manuscript.

Brennan, Michael J, Ashley W Wang, and Yihong Xia, 2004, Estimation and test of a simple model

of intertemporal capital asset pricing, The Journal of Finance 59, 1743–1776.

Brenner, Menachem, and Yehuda Izhakian, 2018, Asset pricing and ambiguity: Empirical evidence,

Journal of Financial Economics 130, 503–531.

Campbell, John Y, 1987, Stock returns and the term structure, Journal of Financial Economics

18, 373–399.

Campbell, John Y, and Ludger Hentschel, 1992, No news is good news: An asymmetric model of

changing volatility in stock returns, Journal of Financial Economics 31, 281–318.

Campbell, John Y, and Samuel B Thompson, 2008, Predicting excess stock returns out of sample:

Can anything beat the historical average?, The Review of Financial Studies 21, 1509–1531.

CBOE, 2011, The CBOE SKEW Index - SKEW, https://cdn.cboe.com/resources/indices/

documents/SKEWwhitepaperjan2011.pdf, [Online; accessed 11-November-2023].

Cederburg, Scott, Travis L Johnson, and Michael S O’Doherty, 2023, On the economic significance

of stock return predictability, Review of Finance 27, 619–657.

Chateauneuf, Alain, Jürgen Eichberger, and Simon Grant, 2007, Choice under uncertainty with

the best and worst in mind: Neo-additive capacities, Journal of Economic Theory 137, 538–567.

Chen, Long, and Lu Zhang, 2011, Do time-varying risk premiums explain labor market perfor-

mance?, Journal of Financial Economics 99, 385–399.

44

https://cdn.cboe.com/resources/indices/documents/SKEWwhitepaperjan2011.pdf
https://cdn.cboe.com/resources/indices/documents/SKEWwhitepaperjan2011.pdf


Chen, Zengjing, and Larry Epstein, 2002, Ambiguity, risk, and asset returns in continuous time,

Econometrica 70, 1403–1443.

Clark, Todd E, and Kenneth D West, 2007, Approximately normal tests for equal predictive accu-

racy in nested models, Journal of Econometrics 138, 291–311.

Cooper, Ilan, and Richard Priestley, 2009, Time-varying risk premiums and the output gap, The

Review of Financial Studies 22, 2801–2833.

DeMiguel, Victor, Alberto Martin-Utrera, and Raman Uppal, 2021, A multifactor perspective on

volatility-managed portfolios, Available at SSRN 3982504 .

Dimmock, Stephen G, Roy Kouwenberg, Olivia S Mitchell, and Kim Peijnenburg, 2015, Estimating

ambiguity preferences and perceptions in multiple prior models: Evidence from the field, Journal

of Risk and Uncertainty 51, 219–244.

Dimmock, Stephen G, Roy Kouwenberg, Olivia S Mitchell, and Kim Peijnenburg, 2016, Ambigu-

ity aversion and household portfolio choice puzzles: Empirical evidence, Journal of Financial

Economics 119, 559–577.

Dimmock, Stephen G, Roy Kouwenberg, Olivia S Mitchell, and Kim Peijnenburg, 2021, Household

portfolio underdiversification and probability weighting: Evidence from the field, The Review of

Financial Studies 34, 4524–4563.

Dow, James, and Sérgio Ribeiro da Costa Werlang, 1992, Uncertainty aversion, risk aversion, and

the optimal choice of portfolio, Econometrica 197–204.

Driesprong, Gerben, Ben Jacobsen, and Benjamin Maat, 2008, Striking oil: another puzzle?, Jour-

nal of Financial Economics 89, 307–327.

Easley, David, and Maureen O’Hara, 2009, Ambiguity and nonparticipation: The role of regulation,

The Review of Financial Studies 22, 1817–1843.

Ebert, Sebastian, and Paul Karehnke, 2021, Skewness preferences in choice under risk, Available at

SSRN.

45



Fama, Eugene F, and Kenneth R French, 2018, Choosing factors, Journal of financial economics

128, 234–252.

French, Kenneth R, G William Schwert, and Robert F Stambaugh, 1987, Expected stock returns

and volatility, Journal of Financial Economics 19, 3–29.

Friedman, Milton, and Leonard J Savage, 1948, The utility analysis of choices involving risk, Journal

of Political Economy 56, 279–304.

Ghirardato, Paolo, Fabio Maccheroni, and Massimo Marinacci, 2004, Differentiating ambiguity and

ambiguity attitude, Journal of Economic Theory 118, 133–173.

Ghysels, Eric, Pedro Santa-Clara, and Rossen Valkanov, 2005, There is a risk-return trade-off after

all, Journal of Financial Economics 76, 509–548.

Giglio, Stefano, Matteo Maggiori, Johannes Stroebel, and Stephen Utkus, 2021, Five facts about

beliefs and portfolios, American Economic Review 111, 1481–1522.

Gilboa, Itzhak, and David Schmeidler, 1989, Maxmin expected utility with non-unique prior, Jour-

nal of Mathematical Economics 18, 141–153.

Gormsen, Niels Joachim, and Christian Skov Jensen, 2022, Higher-moment risk, Available at SSRN

3069617.

Goyal, Amit, Ivo Welch, and Athanasse Zafirov, 2021, A comprehensive look at the empirical

performance of equity premium prediction 2, Available at SSRN 3929119.

Guha, Debashis, and Lorene Hiris, 2002, The aggregate credit spread and the business cycle,

International Review of Financial Analysis 11, 219–227.

Guo, Hui, and Robert F Whitelaw, 2006, Uncovering the risk–return relation in the stock market,

The Journal of Finance 61, 1433–1463.

Hansen, Lars Peter, and Thomas J Sargent, 2001, Robust control and model uncertainty, American

Economic Review 91, 60–66.

Hou, Kewei, Haitao Mo, Chen Xue, and Lu Zhang, 2021, An augmented q-factor model with

expected growth, Review of Finance 25, 1–41.

46



Huang, Darien, and Mete Kilic, 2019, Gold, platinum, and expected stock returns, Journal of

Financial Economics 132, 50–75.

Jondeau, Eric, Qunzi Zhang, and Xiaoneng Zhu, 2019, Average skewness matters, Journal of

Financial Economics 134, 29–47.

Jones, Christopher S, and Selale Tuzel, 2013, New orders and asset prices, The Review of Financial

Studies 26, 115–157.

Ju, Nengjiu, and Jianjun Miao, 2012, Ambiguity, learning, and asset returns, Econometrica 80,

559–591.

Kelly, Bryan, and Hao Jiang, 2014, Tail risk and asset prices, The Review of Financial Studies 27,

2841–2871.

Kelly, Bryan, and Seth Pruitt, 2013, Market expectations in the cross-section of present values,

The Journal of Finance 68, 1721–1756.

Klibanoff, Peter, Massimo Marinacci, and Sujoy Mukerji, 2005, A smooth model of decision making

under ambiguity, Econometrica 73, 1849–1892.

Kocher, Martin G, Amrei Marie Lahno, and Stefan T Trautmann, 2018, Ambiguity aversion is not

universal, European Economic Review 101, 268–283.

König-Kersting, Christian, Christopher Kops, and Stefan T Trautmann, 2023, A test of (weak)

certainty independence, Journal of Economic Theory 209, 105623.

Kurov, Alexander, 2010, Investor sentiment and the stock market’s reaction to monetary policy,

Journal of Banking and Finance 34, 139–149.

Lettau, Martin, and Sydney C Ludvigson, 2010, Measuring and modeling variation in the risk-

return trade-off, Handbook of Financial Econometrics: Tools and Techniques, 617–690.

Li, Jun, and Jianfeng Yu, 2012, Investor attention, psychological anchors, and stock return pre-

dictability, Journal of Financial Economics 104, 401–419.

Liu, Qi, Zhiwei Su, Huijun Wang, and Jianfeng Yu, 2021, Extrapolation and risk-return trade-offs,

Available at SSRN 4039296 .

47



Liu, Weiling, and Emanuel Moench, 2016, What predicts us recessions?, International Journal of

Forecasting 32, 1138–1150.

Lundblad, Christian, 2007, The risk return tradeoff in the long run: 1836–2003, Journal of Financial

Economics 85, 123–150.

Merton, Robert C, 1973, An intertemporal capital asset pricing model, Econometrica 867–887.

Merton, Robert C, 1980, On estimating the expected return on the market: An exploratory inves-

tigation, Journal of Financial Economics 8, 323–361.

Moreira, Alan, and Tyler Muir, 2017, Volatility-managed portfolios, The Journal of Finance 72,

1611–1644.

Nelson, Daniel B, 1991, Conditional heteroskedasticity in asset returns: A new approach, Econo-

metrica, 347–370.
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Online Appendix

8.1. Data Appendix

This appendix contains the sources of data used in the paper.

1. Market Excess Return: The market excess return (Rm-Rf), market return (Rm), and

risk-free rate (Rf) are from Kenneth French’s data library: https://mba.tuck.dartmouth.

edu/pages/faculty/ken.french/data_library.html.

2. Baker-Wurgler Sentiment Index (BW): The Baker andWurgler (2006) market sentiment

index (bw) is from Jeffrey Wurgler’s website: https://pages.stern.nyu.edu/~jwurgler/.

3. Barro-Liao U.S. Disaster Probabilities: The Barro and Liao (2021) U.S. disaster proba-

bility data series is available from Gordon Liao’s website at: https://gliao.xyz/research/.

4. Cederburg, Johnson, & O’Doherty Equity Premium Predictors: The eleven predic-

tors used from Cederburg et al. (2023) were shared with us by the authors of that paper.

Their data extends through December, 2017. We were able to have data updated through

2021 for all eleven of the predictors in their paper that have data available at the start of our

sample period (January, 1990). The eleven predictors are: West Texas Intermediate oil price

changes (Driesprong et al., 2008), the variance risk premium (Bollerslev, 1986), the output

gap (Cooper and Priestley, 2009), average correlation (Pollet and Wilson, 2010), nearness to

the DOW all-time high (Li and Yu, 2012), new orders-to-shipments of durable goods (Jones

and Tuzel, 2013), the tail-risk measure of Kelly and Jiang (2014), the PLS book-to-market fac-

tor (Kelly and Pruitt, 2013), short interest (Rapach et al., 2016), employment growth (Chen

and Zhang, 2011), and the gold-to-platinum ratio (Huang and Kilic, 2019). Data extended

through 2021 for the out-of-sample short interest index is available from Guofu Zhou’s web-

site at http://apps.olin.wustl.edu/faculty/zhou/zpublications.html. Data extended

through 2021 for eight other predictors (West Texas Intermediate oil price changes, the vari-

ance risk premium, the output gap, average correlation, nearness to the DOW-all time high,

new orders-to-shipments of durable goods, the tail-risk measure of Kelly and Jiang (2014),

and the PLS book-to-market factor) were provided to us by Amit Goyal. The remaining two
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series (employment growth and the gold-to-platinum ratio) were extended through 2021 in

Azimi et al. (2023) using publicly available data according to the procedures described in the

original papers (Chen and Zhang, 2011; Huang and Kilic, 2019).

5. Goyal-Welch Equity Premium Predictors: The 14 Goyal-Welch equity premium pre-

dictors at the monthly frequency are available from Amit Goyal’s website: https://sites.

google.com/view/agoyal145.

6. Ambiguity Index: The ambiguity index from Brenner and Izhakian (2018) was provided

to us directly by Yehuda Izhakian.

7. NBER Recession Indicator: The NBER recession indicator is from the St. Louis Federal

Reserve Website (FRED), series USREC and is available at: https://fred.stlouisfed.

org/series/USREC.

8. Price Dividend Ratio (PD): The price-dividend ratio (pd) of the S&P 500 index is com-

puted as S&P composite price, P, divided by dividend D from Robert Shiller’s website:

http://www.econ.yale.edu/~shiller/data.htm.

9. VIX and RNS: The monthly VIX index and the marker Risk Neutral Skewness (RNS)

are from the Chicago Board of Options Exchange (CBOE). Both are converted from daily

to monthly series using the last index value for each month as the monthly value for that

month. The daily VIX data is available at https://www.cboe.com/tradable_products/

vix/vix_historical_data/. The daily SKEW index is available at https://www.cboe.

com/us/indices/dashboard/skew/. RNS is constructed from the SKEW index of the CBOE

according to the relation: RNS = (100 - SKEW)/10. (see the CBOE white paper on

the SKEW index, page 5, at: https://cdn.cboe.com/resources/indices/documents/

SKEWwhitepaperjan2011.pdf).
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8.2. Supplementary Tables and Figures

Table 12. Correlations between recursively estimated αt and Market Risk-Neutral Skewness

RNS RNS× Indicator

αt 0.40∗∗∗ 0.85∗∗∗

Notes: The table displays the correlations between the market ambiguity attitude, αt, and (i) the aggregate market

risk-neutral skewness (RNS) and (ii) the product of RNS and an indicator variable that equals 1 when 1
1+8αt(1−αt)

−γt

is above its median value and which equals zero otherwise. The correlations are for the out-of-sample period (during

which αt is recursively estimated to be free of look-ahead bias), which spans 2006:07 through 2022:12.

Table 13. Granger causality test between αt and Market Risk-Neutral Skewness

BIC AIC

α → RNS (0.010)∗∗ (0.035)∗∗

RNS → α (0.848) (0.807)

Notes: The table reports Granger-causality test results for market ambiguity attitude, α, and market risk-neutral

skewness (RNS). The tests are conducted for both the optimal lag length (one period) under the Bayesian Information

Criterion (BIC) and for the optimal lag length (two periods) under the Akaike Information Criterion (AIC). The p-

values of the tests are reported. ∗∗ denotes the 5% level of statistical significance. The tests are for the out-of-sample

period (during which α is recursively estimated to be free of look-ahead bias), which spans 2006:07 through 2022:12.
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Table 14. GARCH(1,1) specifications of market return for up to 3 lags of the pd ratio.

Full Sample (1990 - 2022) Training Sample Period

(1) (2) (3) (4) (5) (6)

pdt−1 -0.037∗∗ -0.033∗∗

(0.015) (0.017)
pdt−2 -0.037∗∗ -0.032∗

(0.015) (0.017)
pdt−3 -0.036∗∗ -0.033∗

(0.015) (0.017)

Constant 2.838∗∗∗ 2.812∗∗∗ 2.744∗∗∗ 2.504∗∗∗ 2.45∗∗∗ 2.497∗∗∗

(0.827) (0.834) (0.831) (0.916) (0.930) (0.935)

ARCH

ARCHt−1 0.192∗∗∗ 0.192∗∗∗ 0.195∗∗∗ 0.110 0.112 0.113
(0.044) (0.044) (0.045) (0.081) (0.082) (0.083)

GARCHt−1 0.774∗∗∗ 0.774∗∗∗ 0.771∗∗∗ 0.864∗∗∗ 0.862∗∗∗ 0.860∗∗∗

(0.052) (0.052) (0.050) (0.092) (0.092) (0.093)

Constant 0.985∗∗ 0.979∗∗ 0.998∗∗ 0.442 0.442 0.448
(0.476) (0.471) (0.477) (0.506) (0.502) (0.499)

N 395 394 393 197 196 195
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

The table displays the statistics for the GARCH(1,1) model from Section 2.6 of the main text for the training period

(1990:01 - 2006:06) and the for the full-sample period (1990:01 - 2022:12)). As highlighted in the main text, the

GARCH model is recursively estimated each period after the training period to be free from look-ahead bias for the

period from July, 2006, through December, 2022. The full sample and training sample results shown here provide

a snapshot of the performance of the GARCH model at two points in time and demonstrate that the estimated

coefficients are relatively stable. pd is the price-dividend ratio on the S&P 500 index from Robert Shiller’s website.

Returns are in percent. Standard errors are in parentheses.
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Table 15. Market Ambiguity Attitude and the Risk-Return Tradeoff (Simple GARCH Volatility)

Monthly Full Sample (1990 - 2022) Out-of-Sample Period Training Sample Period

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Panel A Re

t Re
t Re

t Re
t Re

t Re
t Re

t Re
t Re

t

qt−1 0.28 1.34∗∗∗ 0.42 1.53∗∗∗ -0.04 1.34∗

(1.09) (5.26) (1.35) (5.22) (-0.09) (1.93)

αt−1qt−1 -0.32 -1.36∗∗∗ -0.28 -1.71∗∗ -0.35 -1.24∗∗

(-1.07) (-3.73) (-0.55) (-2.59) (-1.01) (-2.06)

R2 0.004 0.005 0.040 0.011 0.003 0.060 0.000 0.007 0.023

Quarterly Full Sample (1990 - 2022) Out-of-Sample Period Training Sample Period

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Panel B Re

t Re
t Re

t Re
t Re

t Re
t Re

t Re
t Re

t

qt−3 0.30 1.23∗∗∗ 0.54∗∗ 1.41∗∗∗ -0.22 0.97∗

(1.33) (4.86) (2.40) (4.34) (-0.55) (1.71)

αt−3qt−3 -0.25 -1.20∗∗∗ -0.06 -1.37∗∗ -0.42 -1.06∗

(-0.99) (-3.43) (-0.15) (-2.45) (-1.29) (-1.97)

R2 0.004 0.003 0.033 0.017 0.000 0.048 0.002 0.010 0.019

Newey-West t statistics in parentheses; ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Notes: The table displays regressions of the log equity premium, Re
t , in percent, against the conditional stock market

volatility (qt−h), estimated from a standard simple GARCH(1,1) model, in regression specifications (1), (4), and (7);
regressions of the log equity premium against the product of market ambiguity attitude and the conditional market
volatility (αt−hqt−h) in regression specifications (2), (5), and (8); and regressions of the log equity premium against
both variables in regression specifications (3), (6), and (9). Formally, we run versions of the following regression that
include one or both of the right-hand-side variables:

Re
t = β0 + β1qt−h + β2αt−hqt−h + ϵt, (26)

Regressions (1), (2), and (3) span monthly data from the full sample period (1990:01 - 2022:12). Regressions (4),

(5), and (6) use data from the second half of this sample (2006:07 - 2022:12) which is the period for which qt and αt

are recursively estimated using only information available to investors in real time. Regressions (7), (8), and (9) use

data from the first half of the sample period (1990:01 - 2006:06) which served as the training period in which qt and

αt were estimated using all data in the first half of the sample. Regressions in Panel A are over a forecast horizon

of h = 1 month (monthly horizon). Regressions in Panel B are over a forecast horizon of h = 3 months (quarterly

horizon). For ease of interpreting the coefficients, q and αq are divided by their (full sample) standard deviation.
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Table 16. Market Ambiguity Attitude and the Risk-Return Tradeoff (GJR GARCH Volatility)

Monthly Full Sample (1990 - 2022) Out-of-Sample Period Training Sample Period

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Panel A Re

t Re
t Re

t Re
t Re

t Re
t Re

t Re
t Re

t

qt−1 0.22 1.32∗∗∗ 0.33 1.55∗∗∗ -0.09 1.28∗

(0.79) (4.75) (0.94) (5.11) (-0.20) (1.78)

αt−1qt−1 -0.35 -1.40∗∗∗ -0.31 -1.81∗∗∗ -0.38 -1.19∗∗

(-1.13) (-3.76) (-0.61) (-2.68) (-1.09) (-1.98)

R2 0.002 0.006 0.039 0.007 0.004 0.059 0.000 0.008 0.021

Quarterly Full Sample (1990 - 2022) Out-of-Sample Period Training Sample Period

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Panel B Re

t Re
t Re

t Re
t Re

t Re
t Re

t Re
t Re

t

qt−3 0.24 1.20∗∗∗ 0.41∗ 1.37∗∗∗ -0.27 0.93
(1.03) (4.90) (1.72) (4.38) (-0.61) (1.59)

αt−3qt−3 -0.28 -1.22∗∗∗ -0.11 -1.44∗∗ -0.45 -1.03∗

(-1.11) (-3.55) (-0.31) (-2.60) (-1.32) (-1.91)

R2 0.003 0.004 0.030 0.011 0.001 0.044 0.002 0.011 0.018

Newey-West t statistics in parentheses; ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Notes: The table displays regressions of the log equity premium, Re
t , in percent, against the conditional stock

market volatility (qt−h), estimated from a standard GJR GARCH model, in regression specifications (1), (4), and
(7); regressions of the log equity premium against the product of market ambiguity attitude and the conditional market
volatility (αt−hqt−h) in regression specifications (2), (5), and (8); and regressions of the log equity premium against
both variables in regression specifications (3), (6), and (9). Formally, we run versions of the following regression that
include one or both of the right-hand-side variables:

Re
t = β0 + β1qt−h + β2αt−hqt−h + ϵt, (27)

Regressions (1), (2), and (3) span monthly data from the full sample period (1990:01 - 2022:12). Regressions (4),

(5), and (6) use data from the second half of this sample (2006:07 - 2022:12) which is the period for which qt and αt

are recursively estimated using only information available to investors in real time. Regressions (7), (8), and (9) use

data from the first half of the sample period (1990:01 - 2022:06) which served as the training period in which qt and

αt were estimated using all data in the first half of the sample. Regressions in Panel A are over a forecast horizon

of h = 1 month (monthly horizon). Regressions in Panel B are over a forecast horizon of h = 3 months (quarterly

horizon). For ease of interpreting the coefficients, q and αq are divided by their (full sample) standard deviation.
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Table 17. Stability of Coefficients in Predictability Regressions (Simple GARCH)

Monthly Quarterly

xt zt β1 β2 ∆ β1 β2 ∆

qt -0.05 0.43 ∆ -0.22 0.52 ∆
qt αtqt 1.64 1.41 1.18 1.31
αtqt qt -1.34 -1.67 -1.28 -1.28

Notes: The table displays coefficients from full-sample predictability regressions for the first and second half of the

sample period. The first sub-sample spans monthly data from 1990:01 - 2006:06. The second sub-sample spans from

2006:07 - 2022:12. β1 and β2 denote the estimated coefficients for the first and second halves of the sample. They are

estimated from the regression yt+h = a + β xt + βD D + βDx Dxt + βzzt + ϵt+h where D is a dummy variable that

equals 0 in the first half of the sample period and 1 in the second half of the sample, β1 ≡ β and β2 ≡ β + βDx. The

predictor variables include market ambiguity attitude, αt, conditional market volatility, qt, measured from a simple

GARCH(1,1) model, and the product αtqt. The forecasts use a horizon of h = 1 month (monthly forecast horizon).

∆ denotes a sign change across the two halves of the sample (β1 and β2 are of opposite sign). Significant differences

at the 0.10 level using Newey-West standard errors with a lag length of 12 are denoted ∗. For ease of interpreting

the coefficients, q and αq are divided by their (full sample) standard deviation.
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Table 18. Stability of Coefficients in Predictability Regressions (GJR GARCH)

Monthly Quarterly

xt zt β1 β2 ∆ β1 β2 ∆

qt -0.10 0.33 ∆ -0.26 0.40 ∆
qt αtqt 1.68 1.37 1.22 1.25
αtqt qt -1.32 -1.75 -1.24 -1.35

Notes: The table displays coefficients from full-sample predictability regressions for the first and second half of the

sample period. The first sub-sample spans monthly data from 1990:01 - 2006:06. The second sub-sample spans from

2006:07 - 2022:12. β1 and β2 denote the estimated coefficients for the first and second halves of the sample. They are

estimated from the regression yt+h = a + β xt + βD D + βDx Dxt + βzzt + ϵt+h where D is a dummy variable that

equals 0 in the first half of the sample period and 1 in the second half of the sample, β1 ≡ β and β2 ≡ β + βDx. The

predictor variables include market ambiguity attitude, αt, conditional market volatility, qt, measured from a GJR

GARCH model, and the product αtqt. The forecasts use a horizon of h = 1 month (monthly forecast horizon). ∆

denotes a sign change across the two halves of the sample (β1 and β2 are of opposite sign). Significant differences at

the 0.10 level using Newey-West standard errors with a lag length of 12 are denoted ∗. For ease of interpreting the

coefficients, q and αq are divided by their (full sample) standard deviation.
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Table 19. R2
OS (percent) for Log Equity Premium Forecasts

Simple GARCH Volatility

Monthly Quarterly

Predictors R2
OS CW R2

OS CW

qt -0.16 0.14 -0.36 0.00
qt, αtqt 4.21 2.85∗∗∗ 4.03 2.99∗∗∗

GJR GARCH Volatility

Monthly Quarterly

Predictors R2
OS CW R2

OS CW

qt -0.73 -0.22 -1.13 -0.49
qt, αtqt 3.83 2.89∗∗∗ 3.48 2.78∗∗∗

Notes: The Table displays the Campbell and Thompson (2008) out-of-sample R2 statistic (in percent) for three

sets of predictor variables at the monthly forecast horizon (one month ahead) and the quarterly forecast horizon

(three months ahead) of the log equity premium. The sets of predictors are (i) market volatility (qt); (ii) the product

of market volatility and market ambiguity attitude (αtqt); and (iii) market volatility and the product of volatility

and ambiguity attitude (qt, αtqt). The top panel shows the results for which volatility q is generated by a simple

GARCH(1,1) model. The bottom panel shows the results for which q is generated by a GJR GARCH model. CW

is the Clark and West (2007) MSPE-adjusted statistic; ∗∗∗ denotes significance at the 1% level. The out-of-sample

period spans monthly data from 2006:07 - 2022:12.

58



Figure 3. OOS Equity Premium Prediction with Volatility and Optimism (One-Month Forecast)
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Notes: This figure displays the difference in the cumulative sum of squared errors, ∆CSSEOOS , between the one-

month-ahead forecast of the log equity premium based on the historical average and the one-month-ahead forecast

based on the conditional market volatility from a GARCH(1,1) model (from Section 2.6) in the left panel. The right

panel displays the ∆CSSEOOS between the forecast based on the historical average and the forecast based on the

pair of predictors consisting of the conditional market volatility and the product of the conditional market volatility

and the conditional market ambiguity attitude. The out-of-sample period spans from 2006:07 - 2022:12. Shaded

periods are NBER recessions.
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Figure 4. The Risk-Return Tradeoff Out-of-Sample with α and Simple GARCH Volatility
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Notes: This figure displays the difference in the cumulative sum of squared errors, ∆CSSEOOS , between the forecast

of the log equity premium based on the historical average and the forecast based on the conditional market volatility

from a standard simple GARCH(1,1) model in the left panel. The right panel displays the ∆CSSEOOS between the

forecast based on the historical average and the forecast based on the pair of predictors consisting of the conditional

market volatility and the product of the conditional market volatility and the conditional market ambiguity attitude.

The top panel displays one-month-ahead forecasts (monthly forecast horizon). The bottom panel displays three-

month-ahead forecasts (quarterly forecast horizon). The out-of-sample period spans from 2006:07 - 2022:12. Shaded

periods are NBER recessions.
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Figure 5. The Risk-Return Tradeoff Out-of-Sample with α and GJR GARCH Volatility
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Notes: This figure displays the difference in the cumulative sum of squared errors, ∆CSSEOOS , between the forecast

of the log equity premium based on the historical average and the forecast based on the conditional market volatility

from a standard GJR GARCH model in the left panel. The right panel displays the ∆CSSEOOS between the forecast

based on the historical average and the forecast based on the pair of predictors consisting of the conditional market

volatility and the product of the conditional market volatility and the conditional market ambiguity attitude. The top

panel displays one-month-ahead forecasts (monthly forecast horizon). The bottom panel displays three-month-ahead

forecasts (quarterly forecast horizon). The out-of-sample period spans from 2006:07 - 2022:12. Shaded periods are

NBER recessions.
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